In: Statistics and Probability
An environmentalist wants to determine the relationship between the number of fires, in thousands, and the number of acres burned, in hundreds of thousands. Based on this data, decide if the correlation is significant at alpha = 0.05.
| Number of fires x | 73 | 74 | 58 | 48 | 80 | 65 | 54 | 49 | 
| Number of acres burned y | 64 | 46 | 22 | 23 | 51 | 12 | 29 | 10 | 
1. Draw a scatter plot of the data.
2. Showing all work calculate r.
3. Showing all work determine where to reject or not reject the null hypothesis.
4. Determine the line of best fit y = a + bx.
5. When x = 61 what is y and what does it mean I this context.
6. Determine r^2.
7. Determine Sset.
8. Find the 95% prediction interval when x = 61.
1)

2. Showing all work calculate r.
| X | Y | X*Y | X2 | Y2 | |
| 73 | 64 | 4672 | 5329 | 4096 | |
| 74 | 46 | 3404 | 5476 | 2116 | |
| 58 | 22 | 1276 | 3364 | 484 | |
| 48 | 23 | 1104 | 2304 | 529 | |
| 80 | 51 | 4080 | 6400 | 2601 | |
| 65 | 12 | 780 | 4225 | 144 | |
| 54 | 29 | 1566 | 2916 | 841 | |
| 49 | 10 | 490 | 2401 | 100 | |
| Sum = | 501 | 257 | 17372 | 32415 | 10911 | 


3. Showing all work determine where to reject or not reject the null hypothesis.
The hypothesis being tested is:
H0: β1 = 0
H1: β1 ≠ 0
| ANOVA table | |||||
| Source | SS | df | MS | F | p-value | 
| Regression | 1,569.1183 | 1 | 1,569.1183 | 8.67 | .0258 | 
| Residual | 1,085.7567 | 6 | 180.9595 | ||
| Total | 2,654.8750 | 7 | 
Since p value There is sufficient evidence to conclude that β1 not
equal to zero at 5% level of significance. 4. Determine the line of best fit y = a + bx. 5. When x = 61 what is y and what does it mean I this
context. This means that when number of fires is 61 then the predicted
value of the number of acres burned is 30.1293 n hundreds of
thousands. 6. Determine r^2. r=0.769 r^2=0.769^2=0.5914 7. Determine Sset=13.452 Using excel
 8. Find the 95% prediction interval when x = 61.







 
Regression Analysis 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
r² 
0.591 
 
 
 
 
 
 
r   
0.769 
 
 
 
 
 
 
Std. Error   
13.452 
 
 
 
 
 
 
n   
8 
 
 
 
 
 
 
k   
1 
 
 
 
 
 
 
Dep. Var. 
Number of acres
burned,y 
 
 
 
 
 
 
 
 
 
 
 
ANOVA table 
 
 
 
 
 
 
 
Source 
SS   
df   
MS 
F 
p-value 
 
 
Regression 
1,569.1183 
1   
1,569.1183 
8.67 
.0258 
 
 
Residual 
1,085.7567 
6   
180.9595 
 
 
 
 
Total 
2,654.8750 
7   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Regression output 
 
 
 
confidence
interval 
 
variables 
coefficients 
std. error 
   t
(df=6) 
p-value 
95% lower 
95% upper 
 
Intercept 
-44.8031 
26.55 
-1.69 
0.14 
-109.78 
20.17 
 
Number of fires,x 
1.2284 
0.4172 
2.945 
.0258 
0.2076 
2.2491 
 
 
 
 
 
 
 
 
 
Predicted values for: Number of acres
burned,y 
 
 
 
 
 
 
95% Confidence
Interval 
95% Prediction
Interval 
 
 
Number of fires,x 
Predicted 
lower 
upper 
lower 
upper 
Leverage 
 
61 
30.129 
18.374 
41.884 
-4.823 
65.081 
0.128 
The 95% prediction interval is (-4.823,65.081)