Question

In: Physics

Describe dual nature of matter? Write de Broglie wavelength and frequency? Explain the electron microscope? Write...

Describe dual nature of matter? Write de Broglie wavelength and frequency? Explain the electron microscope?

Write Bohr’s theory and assumptions for hydrogen atom with energy level diagram? Write Bohr’s correspondence principle?

Solutions

Expert Solution

1. Dual nature of matter - In case of light some phenomenon like diffraction and interference can be explained on the basis of its wave character. However, the certain other phenomenon such as black body radiation and photoelectric effect can be explained only on the basis of its particle nature. Thus, light is said to have a dual character.

Similarly in case of subatomic particle, few phenomena were not explained with the help of particle nature so these partucles like electrons seemed to be showing wave nature.

The relationship between momentum and wavelength for matter waves is given by p = h/λ, and the relationship energy and frequency is E = hf. The wavelength λ = h/p is called the de Broglie wavelength, and the relations λ = h/p and f = E/h are called the de Broglie relations.

 E(Energy) = hv = mc2

But v = c/λ

h c/λ   = mc2

(or) λ = h /mc

Electron Microscope :

An EM is a microscope that focuses beams of energetic electrons to examine objects up to nano-scales.

They utilize the same principles behind an optical microscope, but rather than photons or particles of light, concentrate electrons, charged particles located on the outside of atoms, onto an object. Electron microscopes use shaped magnetic fields to form electron optical lens systems that are analogous to the glass lenses of an optical light microscope.It is used in biomedical research to investigate the detailed structure of tissues, cells, organelles and macromolecular complexes. The high resolution of EM images results from the use of electrons as the source of illuminating radiation.

2.

  • Bohr's model of hydrogen is based on the nonclassical assumption that electrons travel in specific shells, or orbits, around the nucleus.

  • Bohr's model calculated the following energies for an electron in the shell, n.

  • the correspondence principle states that the behavior of systems described by the theory of quantum mechanics (or by the old quantum theory) reproduces classical physics in the limit of large quantum numbers. In other words, it says that for large orbits and for large energies, quantum calculations must agree with classical calculations. It says that the prediction of the quantum theory for the behaviour of any physical system must correspond to the prediction of classical physics in the limit in which the quantum numberspecifying the state of system becomes very large.

  • Quantum theory = classical theory.


Related Solutions

a) Derive an expression for the de Broglie wavelength of an electron in the Bohr model...
a) Derive an expression for the de Broglie wavelength of an electron in the Bohr model of the hydrogen atom as a function of a0 and n. b) Assume the uncertainty of the electron’s position is the diameter of its Bohr orbit. Derive an expression for the minimum uncertainty in electron’s velocity, (∆vn) as function of a0 and n (and other constants). c) Use quantization of angular momentum to write an expression for the velocity as a function of n,...
The mass of an electron is 9.11×10−31 kg. If the de Broglie wavelength for an electron...
The mass of an electron is 9.11×10−31 kg. If the de Broglie wavelength for an electron in a hydrogen atom is 3.31×10−10 m, how fast is the electron moving relative to the speed of light? The speed of light is 3.00×108 m/s.
An electron has a de Broglie wavelength of 235 nm .What is the speed of the...
An electron has a de Broglie wavelength of 235 nm .What is the speed of the electron? --------------------------------------------------------------------- How much energy is contained in 1 mol of γ-ray photons with a wavelength of 2.43×10−5 nm . ? ------------------------------------------------------------------------ In a technique used for surface analysis called auger electron spectroscopy (AES), electrons are accelerated toward a metal surface. These electrons cause the emissions of secondary electrons-called auger electrons-from the metal surface. The kinetic energy of the auger electrons depends on the...
What are Matter (de Broglie) Waves? If matter has a wave nature, why is this wave-like...
What are Matter (de Broglie) Waves? If matter has a wave nature, why is this wave-like characteristic not observable in our daily experiences? How can matter have a dual wave-particle nature?
1. For what kinetic energy is the de Broglie wavelength of an electron equal to its...
1. For what kinetic energy is the de Broglie wavelength of an electron equal to its Compton wavelength? Express your answer in units of mc2 in doing the calculation, and then use mc2 = 0.5 MeV.(Answer: 0.2 MeV) 2. A beam of electrons with energy 1.0 eV approaches a potential barrier with U = 2.0 eV, whose width is 0.10 nm (see a figure below). Estimate the fraction of electrons that tunnel through the barrier. (Hint: use the relation of...
Calculate the de Broglie wavelength of (a) a 0.715 keV electron (mass = 9.109 × 10-31...
Calculate the de Broglie wavelength of (a) a 0.715 keV electron (mass = 9.109 × 10-31 kg), (b) a 0.715 keV photon, and (c) a 0.715 keV neutron (mass = 1.675 × 10-27 kg).
Explain what physicists mean when they say that the de Broglie wavelength relates to the probability...
Explain what physicists mean when they say that the de Broglie wavelength relates to the probability distribution wave function. Please be specific and do not copy and paste previous answers.
5. (5) (a) Describe the de Broglie Model (also known as the de Broglie-Bohr Model) of...
5. (5) (a) Describe the de Broglie Model (also known as the de Broglie-Bohr Model) of the hydrogen atom. (b) What was its motivation? (To address what problem was it proposed?) (c) What drawbacks did it still have when it was proposed?
Calculate the length of the de broglie wave of an electron and a proton moving with...
Calculate the length of the de broglie wave of an electron and a proton moving with a kinetic energy of 1keV. For what values of kinetic energy will their wavelength be equal to 0.1 nm? me = 9.1.10 31kg, e = 1.602.10-19C, mp = 1.627.10-27 kg
In this example we will apply the concept of the de Broglie wavelength to neutrons. Find...
In this example we will apply the concept of the de Broglie wavelength to neutrons. Find the speed and kinetic energy of a neutron (m=1.675×10−27kg)(m=1.675×10−27kg) that has a de Broglie wavelength λ=0.200nmλ=0.200nm, typical of atomic spacing in crystals. Compare the energy with the average kinetic energy of a gas molecule at room temperature (T=20∘C)(T=20∘C). Find the kinetic energy of an electron with a de Broglie wavelength of 0.163 nmnm .
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT