Question

In: Physics

A 0.30-kg puck, initially at rest on a frictionless horizontal surface, is struck by a 0.20-kg...

A 0.30-kg puck, initially at rest on a frictionless horizontal surface, is struck by a 0.20-kg puck that is initially moving along the x-axis with a velocity of 9.0 m/s. After the collision, the 0.20-kg puck has a speed of 5.4 m/s at an angle of θ = 53° to the positive x-axis.

a)Determine the velocity of the 0.30-kg puck after the collision.

magnitude-?

direction-? (from the positive X-axis)

(b) Find the fraction of kinetic energy lost in the collision.

Solutions

Expert Solution

Solution-

(a)Use the momentum conservation in x and y direction to find the velocity of 0.3 kg puck,

Momentum conservation in the x-direction,

......(1)

Momentum conservation in the y-direction,

......(2)

Substitute in equation 1

Now find V, use equation 2

The velocity of 0.3 kg Puck is 4.78 m/s towards 37 angles from the x-axis.

(b)

Find the initial kinetic energy and final kinetic energy to find loss,

......(3)

similarly final kinetic energy after the collision,

Use equation 3,

or 22 % of the initial energy is being lost.

Therefore, total friction energy loss in the collision is 1.76 J , or 22 % energy of the system is loss.


Related Solutions

A 0.30-kg puck, initially at rest on a frictionless horizontal surface, is struck by a 0.20-kg...
A 0.30-kg puck, initially at rest on a frictionless horizontal surface, is struck by a 0.20-kg puck that is initially moving along the x-axis with a velocity of 8.6 m/s. After the collision, the 0.20-kg puck has a speed of 5.2 m/s at an angle of θ = 53° to the positive x-axis. (a) Determine the velocity of the 0.30-kg puck after the collision. (b) Find the fraction of kinetic energy lost in the collision.
A 0.30 kg puck, initially at rest on a frictionless horizontal surface, is struck by a...
A 0.30 kg puck, initially at rest on a frictionless horizontal surface, is struck by a 0.20 kg puck that is initially moving along the x axis with a velocity of 2.4 m/s. After the collision, the 0.20 kg puck has a speed of 0.8 m/s at an angle of θ = 53° to the positive x axis. (a) Determine the velocity of the 0.30 kg puck after the collision. _ at _ ° from +x axis (b) This was...
A 0.478 kg puck, initially at rest on a horizontal, frictionless surface, is struck by a...
A 0.478 kg puck, initially at rest on a horizontal, frictionless surface, is struck by a 0.129 kg puck moving initially along the x axis with a speed of 2.19 m/s. After the collision, the 0.129 kg puck has a speed of 1.19 m/s at an angle of 29◦ to the positive x axis. Determine the magnitude of the velocity of the 0.478 kg puck after the collision. Answer in units of m/s.
A 0.300-kg puck, initially at rest on a horizontal, frictionless surface, is struck by a 0.200-kg...
A 0.300-kg puck, initially at rest on a horizontal, frictionless surface, is struck by a 0.200-kg puck moving initially along the x axis with a speed of 2.00 m/s. After the collision, the 0.200- kg puck has a speed of 1.00 m/s at an angle of θ = 53.0° to the positive x axis. (a) Determine the velocity of the 0.300-kg puck after the collision. (b) Find the fraction of kinetic energy lost in the collision. and please explain
A 0.300-kg puck, initially at rest on a horizontal, frictionless surface, is struck by a 0.200-kg...
A 0.300-kg puck, initially at rest on a horizontal, frictionless surface, is struck by a 0.200-kg puck moving initially along the x axis with a speed of 2.00 m/s. After the collision, the 0.200- kg puck has a speed of 1.00 m/s at an angle of θ = 53.0° to the positive x axis. (a) Determine the velocity of the 0.300-kg puck after the collision. (b) Find the fraction of kinetic energy lost in the collision. (4 points)
A 0.255kg puck, initially at rest on a frictionless horizontal surface, is struck by a 0.215kg...
A 0.255kg puck, initially at rest on a frictionless horizontal surface, is struck by a 0.215kg puck that is initially moving along the x axis with a velocity of 2.15m/s. After the collision, the 0.215kg puck has a speed of 1.14m/s at an angle of θ = 57.8° to the positive x axis. (a) Determine the speed of the 0.255kg puck after the collsion. b) Determine the angle of the puck with respect to the x-axis. c) Find the percentage...
A 0.320 kg puck at rest on a horizontal frictionless surface is struck by a 0.220...
A 0.320 kg puck at rest on a horizontal frictionless surface is struck by a 0.220 kg puck moving in the positive x direction with a speed of 4.05 m/s. After the collision, the 0.220 kg puck has a speed of 1.29 m/s at an angle of ? = 60.0° counterclockwise from the positive x axis. (a) Determine the velocity of the 0.320 kg puck after the collision. Express your answer in vector form. vf = ___m/s (b) Find the...
A 2 kg puck, initaly at rest on a horizonta, frictionless surface is struck by another...
A 2 kg puck, initaly at rest on a horizonta, frictionless surface is struck by another 2 kg puck moving at a velocity of 2 m/s along the x-axis. After the collision, one puck is moving at a speed of 1 m/s at an angle 53 degrees to the positive x-axis. A. What is the velocity of the other puck? B. How much energy is lost in the collision? C. At what angle, does the other puck make?
A 5.0 kg mass is initially at rest on a horizontal frictionless surface when a horizontal...
A 5.0 kg mass is initially at rest on a horizontal frictionless surface when a horizontal force along an x axis is applied to the block. The force is given by ? ⃗(?) = (6.0?2 − 2?3)?̂, where the force in in newtons, x is in meters, and the initial position of the block is x = 0. (a) What is the work done in moving the block from x = 1.0 m to x = 3.0 m? (b) What...
2. a) A 0.20 kg hockey puck on a frictionless surface is hit with a stick....
2. a) A 0.20 kg hockey puck on a frictionless surface is hit with a stick. The force of the stick on the puck, during the 0.4 seconds while they are in contact, causes the puck to go from rest to 36 meters per second east. What was the magnitude of the average force of the stick on the puck while they were in contact? b) A 3-kg block is placed on a frictionless ramp-incline, where it slides from rest,...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT