Question

In: Physics

A 5.0 kg mass is initially at rest on a horizontal frictionless surface when a horizontal...

A 5.0 kg mass is initially at rest on a horizontal frictionless surface when a horizontal force along an x axis is applied to the block. The force is given by ? ⃗(?) = (6.0?2 − 2?3)?̂, where the force in in newtons, x is in meters, and the initial position of the block is x = 0. (a) What is the work done in moving the block from x = 1.0 m to x = 3.0 m? (b) What is the maximum kinetic energy of the block between x = 0.0 m and x = 3.0 m? (15 points)

Solutions

Expert Solution


Related Solutions

A 0.478 kg puck, initially at rest on a horizontal, frictionless surface, is struck by a...
A 0.478 kg puck, initially at rest on a horizontal, frictionless surface, is struck by a 0.129 kg puck moving initially along the x axis with a speed of 2.19 m/s. After the collision, the 0.129 kg puck has a speed of 1.19 m/s at an angle of 29◦ to the positive x axis. Determine the magnitude of the velocity of the 0.478 kg puck after the collision. Answer in units of m/s.
A 0.30 kg puck, initially at rest on a frictionless horizontal surface, is struck by a...
A 0.30 kg puck, initially at rest on a frictionless horizontal surface, is struck by a 0.20 kg puck that is initially moving along the x axis with a velocity of 2.4 m/s. After the collision, the 0.20 kg puck has a speed of 0.8 m/s at an angle of θ = 53° to the positive x axis. (a) Determine the velocity of the 0.30 kg puck after the collision. _ at _ ° from +x axis (b) This was...
A 0.300-kg puck, initially at rest on a horizontal, frictionless surface, is struck by a 0.200-kg...
A 0.300-kg puck, initially at rest on a horizontal, frictionless surface, is struck by a 0.200-kg puck moving initially along the x axis with a speed of 2.00 m/s. After the collision, the 0.200- kg puck has a speed of 1.00 m/s at an angle of θ = 53.0° to the positive x axis. (a) Determine the velocity of the 0.300-kg puck after the collision. (b) Find the fraction of kinetic energy lost in the collision. and please explain
A 0.300-kg puck, initially at rest on a horizontal, frictionless surface, is struck by a 0.200-kg...
A 0.300-kg puck, initially at rest on a horizontal, frictionless surface, is struck by a 0.200-kg puck moving initially along the x axis with a speed of 2.00 m/s. After the collision, the 0.200- kg puck has a speed of 1.00 m/s at an angle of θ = 53.0° to the positive x axis. (a) Determine the velocity of the 0.300-kg puck after the collision. (b) Find the fraction of kinetic energy lost in the collision. (4 points)
A 0.30-kg puck, initially at rest on a frictionless horizontal surface, is struck by a 0.20-kg...
A 0.30-kg puck, initially at rest on a frictionless horizontal surface, is struck by a 0.20-kg puck that is initially moving along the x-axis with a velocity of 9.0 m/s. After the collision, the 0.20-kg puck has a speed of 5.4 m/s at an angle of θ = 53° to the positive x-axis. a)Determine the velocity of the 0.30-kg puck after the collision. magnitude-? direction-? (from the positive X-axis) (b) Find the fraction of kinetic energy lost in the collision.
A 0.30-kg puck, initially at rest on a frictionless horizontal surface, is struck by a 0.20-kg...
A 0.30-kg puck, initially at rest on a frictionless horizontal surface, is struck by a 0.20-kg puck that is initially moving along the x-axis with a velocity of 8.6 m/s. After the collision, the 0.20-kg puck has a speed of 5.2 m/s at an angle of θ = 53° to the positive x-axis. (a) Determine the velocity of the 0.30-kg puck after the collision. (b) Find the fraction of kinetic energy lost in the collision.
A person with mass mp=80 kg is standing at rest on a horizontal, frictionless surface holding...
A person with mass mp=80 kg is standing at rest on a horizontal, frictionless surface holding a ball of wet clay with mass mg=10 kg . In front of the person is a large block with mass M=20 kg at rest next to a spring with stiffness k=100 N/m . The person throws the ball horizontally, it sticks to the block, and then ball and block slide and compress the spring a distance 1=0.75 m away from equilibrium before the...
A 0.255kg puck, initially at rest on a frictionless horizontal surface, is struck by a 0.215kg...
A 0.255kg puck, initially at rest on a frictionless horizontal surface, is struck by a 0.215kg puck that is initially moving along the x axis with a velocity of 2.15m/s. After the collision, the 0.215kg puck has a speed of 1.14m/s at an angle of θ = 57.8° to the positive x axis. (a) Determine the speed of the 0.255kg puck after the collsion. b) Determine the angle of the puck with respect to the x-axis. c) Find the percentage...
A 0.320 kg puck at rest on a horizontal frictionless surface is struck by a 0.220...
A 0.320 kg puck at rest on a horizontal frictionless surface is struck by a 0.220 kg puck moving in the positive x direction with a speed of 4.05 m/s. After the collision, the 0.220 kg puck has a speed of 1.29 m/s at an angle of ? = 60.0° counterclockwise from the positive x axis. (a) Determine the velocity of the 0.320 kg puck after the collision. Express your answer in vector form. vf = ___m/s (b) Find the...
A 1.1 kg mass is held at rest on top of a frictionless and horizontal table....
A 1.1 kg mass is held at rest on top of a frictionless and horizontal table. A light string loops over a pulley which is in the shape of a 10 cm radius solid disk which has a mass of 1.1 kg. The light string then supports a mass of 1.1 kg which is hanging in air. The mass on the table is released and the suspended mass falls. What is the acceleration of the falling mass. What is the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT