Question

In: Civil Engineering

simply supported beam of length 8m carries UDL of 15N per meter for the entire span...

simply supported beam of length 8m carries UDL of 15N per meter for the entire span . also have point load of 4KN 1.5m from left support 7KN 2m from right support and 10 KN acting at the centre of beam . draw shear force snd bending moment diagram and calculate the maximum bending moment

Solutions

Expert Solution


Related Solutions

Please select the reinforcement spacing for the entire span of a simply supported beam on a...
Please select the reinforcement spacing for the entire span of a simply supported beam on a 22 ft span. Use the detailed method to calculate Vc. Do not use a shear envelope diagram use the regular shear force diagram. Use b = 16 in., d = 27 in., the main bending reinforcement consists of 4 #9 bars. The unfactored dead and live loads are 2.6 Kip/ft and 2.5 kip/ft, respectively, f’c = 4500 psi, and fy = 60,000 psi. Use...
A simply supported beam of 10m span carries a uniformly distributed load of 50kN/m spread over...
A simply supported beam of 10m span carries a uniformly distributed load of 50kN/m spread over 5m from the left support and a 5kN concentrated load on its center . Its base is 250mm while deep is 500mm. Calculate the maximum deflection in mm. E = 2.0x10^5 N/mm2. Use the area moment method
Q1/ A simply supported isolated (T) beam have span length of (6m) subject to the ultimate...
Q1/ A simply supported isolated (T) beam have span length of (6m) subject to the ultimate design moment (Mu=705 kN.m) (including the moment from the self weight of the beam). Beam dimensions are: d=500mm, hf=125mm, bw=250mm, and b=500mm. for , find the steel reinforcement at the center of the beam and find the total depth (h) of the beam. (Use 010mm for shear reinforcement and 036mm for longitudinal reinforcement
A 6-m span simply supported beam carries a uniformly distributed ultimate load of 70 kN/m. The...
A 6-m span simply supported beam carries a uniformly distributed ultimate load of 70 kN/m. The dimensions of the beam section are b = 300 mm, d = 700 mm. The beam is reinforced with bars of 25-mm diameter in one row. f’c = 25 MPa, and Fy = 420 MPa. Use # 10 U-shaped stirrups. Neglect the column width. The stirrup spacings (s) is equal to: a. 450 mm                    b. 350 mm c. 400 mm                    d. 500 mm                   
simply supported T-beam of 6 m clear span carries an ultimate load of 38 kN/m. The...
simply supported T-beam of 6 m clear span carries an ultimate load of 38 kN/m. The beam section dimensions, support particulars and tension reinforcement are shown in Figure Q1. Design the shear reinforcement for the beam. Data Given: The characteristic strength of the concrete is             25 N/mm2. The characteristic strength of steel reinforcement is         460N/mm2. The characteristic strength of shear reinforcement is         250N/mm2. Nominal maximum aggregate size (hagg) is             20...
A simply supported beam with a span of 26 FT is used to carry a service...
A simply supported beam with a span of 26 FT is used to carry a service dead load (including self-weight) of 1.65 KLF and a service live load of 3.3 KLF and is reinforced with 4-#9 bars. The beam has a width b of 14 IN, an effective depth of 24.5 IN., and a height of 27 IN. The material strengths are f’c = 4000 PSI and fy = 60 KSI. The immediate deflection due to live load is limited...
Design a simply supported slab over a watch man office of 3.2m x 8m inner span...
Design a simply supported slab over a watch man office of 3.2m x 8m inner span factored live load of 10 KN/m^2. Use M25 grade concrete and Fe460 grade steel. Compare your results with void slab and write a summaryvfor it.
A simply supported beam spans 35ft and carries a simply distrusted dead load of 0.2kip/ft including...
A simply supported beam spans 35ft and carries a simply distrusted dead load of 0.2kip/ft including the beam self-weight and live load of 0.8kip/ft. Determine the minimum required plastic section modulus and select the lightest-weight W-shape to carry the moment. Assume full lateral support and A992 steel. Design by (a) LRFD and (b) ASD
For analyzing a bridge, bending moment diagrams were plotted for a simply supported beam of span...
For analyzing a bridge, bending moment diagrams were plotted for a simply supported beam of span 5 m when subjected to a uniformly distributed load of magnitude ‘w’ kN/m over the entire span. It was noted that maximum bending moment is equal to 37.5 kNm. Suggest a value for ‘w’ based on the requirements. How it will change the reactions at the supports? What happens to the shear force and bending moment values at the supports and at the center?...
For analyzing a bridge, bending moment diagrams were plotted for a simply supported beam of span...
For analyzing a bridge, bending moment diagrams were plotted for a simply supported beam of span 5 m when subjected to a uniformly distributed load of magnitude ‘w’ kN/m over the entire span. It was noted that maximum bending moment is equal to 37.5 kNm. Suggest a value for ‘w’ based on the requirements. How it will change the reactions at the supports? What happens to the shear force and bending moment values at the supports and at the center?...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT