In: Advanced Math
Starting from mynewton write a function program mysymnewton that takes as its input a symbolic function f and the ordinary variables x0 and n. Let the program take the symbolic derivative f ′ , and then use subs to proceed with Newton’s method. Test it on f(x) = x 3 − 4 starting with x0 = 2. Turn in the program and a brief summary of the results
code for matlab is syms x f=@(x) x^3-4; f'=diff(f(x)) h=@(y) subs(f',y)
code for mathematica
f[x_]:=x^3-4
F'[X] (*THEN PRESS SHIFT AND ENTER*)
(TO GET THE VALUE FOR XO=2)
F'[2] (*THEN PRESS SHIFT AND ENTER*)
AND SAVE PROGRAME aS mysymnewton
function [ x, ex ] = newton( f, df, x0, tol, nmax )
%
% NEWTON Newton's Method
% Newton's method for finding successively better approximations to the
% zeroes of a real-valued function.
%
% Input:
% f - input funtion
% df - derived input function
% x0 - inicial aproximation
% tol - tolerance
% nmax - maximum number of iterations
%
% Output:
% x - aproximation to root
% ex - error estimate
%
% Example:
% [ x, ex ] = newton( 'x^3-4', 0, 0.5*10^-5, 10 )
%
if nargin == 3
tol = 1e-4;
nmax = 1e1;
elseif nargin == 4
nmax = 1e1;
elseif nargin ~= 5
error('newton: invalid input parameters');
end
f = inline(f);
df = inline(df);
x(1) = x0 - (f(x0)/df(x0));
ex(1) = abs(x(1)-x0);
k = 2;
while (ex(k-1) >= tol) && (k <= nmax)
x(k) = x(k-1) - (f(x(k-1))/df(x(k-1)));
ex(k) = abs(x(k)-x(k-1));
k = k+1;
end
end