In: Statistics and Probability
For Problems 8-10, throw a die twice and let X, Y be the results (each from 1 to 6).
Problem 8. Find the expectation and variance of X.
Problem 9. Find the variance of X - 2Y.
Problem 10. Find the expected value of X^2Y.
Problem 8.
X : Results of throwing a single die
P(X) : Probability of X
Expectation :


Variance : Var(X) = E(X2) - E(X)2
| X | P(X) | P(X) | XP(X) | X2P(X) | 
| 1 | 1/6 | 0.1667 | 0.1667 | 0.1667 | 
| 2 | 1/6 | 0.1667 | 0.3333 | 0.6667 | 
| 3 | 1/6 | 0.1667 | 0.5000 | 1.5000 | 
| 4 | 1/6 | 0.1667 | 0.6667 | 2.6667 | 
| 5 | 1/6 | 0.1667 | 0.8333 | 4.1667 | 
| 6 | 1/6 | 0.1667 | 1.0000 | 6.0000 | 
| Total | 1.0000 | 3.5000 | 15.1667 | 
Expectation

Expectation = 3.5
Variance : Var(X) = E(X2) - E(X)2 = 15.1667 - 3.52 = 2.9167
Problem 9
Variance of X-2Y
The following table provides, All possibles of X,Y and their probability.
| X | Y | P(X,Y) | 
| 1 | 1 | 1/36 | 
| 1 | 2 | 1/36 | 
| 1 | 3 | 1/36 | 
| 1 | 4 | 1/36 | 
| 1 | 5 | 1/36 | 
| 1 | 6 | 1/36 | 
| 2 | 1 | 1/36 | 
| 2 | 2 | 1/36 | 
| 2 | 3 | 1/36 | 
| 2 | 4 | 1/36 | 
| 2 | 5 | 1/36 | 
| 2 | 6 | 1/36 | 
| 3 | 1 | 1/36 | 
| 3 | 2 | 1/36 | 
| 3 | 3 | 1/36 | 
| 3 | 4 | 1/36 | 
| 3 | 5 | 1/36 | 
| 3 | 6 | 1/36 | 
| 4 | 1 | 1/36 | 
| 4 | 2 | 1/36 | 
| 4 | 3 | 1/36 | 
| 4 | 4 | 1/36 | 
| 4 | 5 | 1/36 | 
| 4 | 6 | 1/36 | 
| 5 | 1 | 1/36 | 
| 5 | 2 | 1/36 | 
| 5 | 3 | 1/36 | 
| 5 | 4 | 1/36 | 
| 5 | 5 | 1/36 | 
| 5 | 6 | 1/36 | 
| 6 | 1 | 1/36 | 
| 6 | 2 | 1/36 | 
| 6 | 3 | 1/36 | 
| 6 | 4 | 1/36 | 
| 6 | 5 | 1/36 | 
| 6 | 6 | 1/36 | 
The following table extends the above by calculating X-2Y
| X | Y | X-2Y | 
| 1 | 1 | -1 | 
| 1 | 2 | -3 | 
| 1 | 3 | -5 | 
| 1 | 4 | -7 | 
| 1 | 5 | -9 | 
| 1 | 6 | -11 | 
| 2 | 1 | 0 | 
| 2 | 2 | -2 | 
| 2 | 3 | -4 | 
| 2 | 4 | -6 | 
| 2 | 5 | -8 | 
| 2 | 6 | -10 | 
| 3 | 1 | 1 | 
| 3 | 2 | -1 | 
| 3 | 3 | -3 | 
| 3 | 4 | -5 | 
| 3 | 5 | -7 | 
| 3 | 6 | -9 | 
| 4 | 1 | 2 | 
| 4 | 2 | 0 | 
| 4 | 3 | -2 | 
| 4 | 4 | -4 | 
| 4 | 5 | -6 | 
| 4 | 6 | -8 | 
| 5 | 1 | 3 | 
| 5 | 2 | 1 | 
| 5 | 3 | -1 | 
| 5 | 4 | -3 | 
| 5 | 5 | -5 | 
| 5 | 6 | -7 | 
| 6 | 1 | 4 | 
| 6 | 2 | 2 | 
| 6 | 3 | 0 | 
| 6 | 4 | -2 | 
| 6 | 5 | -4 | 
| 6 | 6 | -6 | 
The above table is sorted on X-2Y, so that same value of X-2Y are together
| X | Y | X-2Y | 
| 1 | 6 | -11 | 
| 2 | 6 | -10 | 
| 1 | 5 | -9 | 
| 3 | 6 | -9 | 
| 2 | 5 | -8 | 
| 4 | 6 | -8 | 
| 1 | 4 | -7 | 
| 3 | 5 | -7 | 
| 5 | 6 | -7 | 
| 2 | 4 | -6 | 
| 4 | 5 | -6 | 
| 6 | 6 | -6 | 
| 1 | 3 | -5 | 
| 3 | 4 | -5 | 
| 5 | 5 | -5 | 
| 2 | 3 | -4 | 
| 4 | 4 | -4 | 
| 6 | 5 | -4 | 
| 1 | 2 | -3 | 
| 3 | 3 | -3 | 
| 5 | 4 | -3 | 
| 2 | 2 | -2 | 
| 4 | 3 | -2 | 
| 6 | 4 | -2 | 
| 1 | 1 | -1 | 
| 3 | 2 | -1 | 
| 5 | 3 | -1 | 
| 2 | 1 | 0 | 
| 4 | 2 | 0 | 
| 6 | 3 | 0 | 
| 3 | 1 | 1 | 
| 5 | 2 | 1 | 
| 4 | 1 | 2 | 
| 6 | 2 | 2 | 
| 5 | 1 | 3 | 
| 6 | 1 | 4 | 
| X | Y | X-2Y | X-2Y | P(X-2Y) | 
| 1 | 6 | -11 | -11 | 1/36 | 
| 2 | 6 | -10 | -10 | 1/36 | 
| 1 | 5 | -9 | -9 | 2/36 | 
| 3 | 6 | -9 | ||
| 2 | 5 | -8 | -8 | 2/36 | 
| 4 | 6 | -8 | ||
| 1 | 4 | -7 | -7 | 3/36 | 
| 3 | 5 | -7 | ||
| 5 | 6 | -7 | ||
| 2 | 4 | -6 | -6 | 3/36 | 
| 4 | 5 | -6 | ||
| 6 | 6 | -6 | ||
| 1 | 3 | -5 | -5 | 3/36 | 
| 3 | 4 | -5 | ||
| 5 | 5 | -5 | ||
| 2 | 3 | -4 | -4 | 3/36 | 
| 4 | 4 | -4 | ||
| 6 | 5 | -4 | ||
| 1 | 2 | -3 | -3 | 3/36 | 
| 3 | 3 | -3 | ||
| 5 | 4 | -3 | ||
| 2 | 2 | -2 | -2 | 3/36 | 
| 4 | 3 | -2 | ||
| 6 | 4 | -2 | ||
| 1 | 1 | -1 | -1 | 3/36 | 
| 3 | 2 | -1 | ||
| 5 | 3 | -1 | ||
| 2 | 1 | 0 | 0 | 3/36 | 
| 4 | 2 | 0 | ||
| 6 | 3 | 0 | ||
| 3 | 1 | 1 | 1 | 2/36 | 
| 5 | 2 | 1 | ||
| 4 | 1 | 2 | 2 | 2/36 | 
| 6 | 2 | 2 | ||
| 5 | 1 | 3 | 3 | 1/36 | 
| 6 | 1 | 4 | 4 | 1/36 | 
| Z:(X-2Y) | P(Z)=P(X-2Y) | ZP(Z) | Z2P(Z) | 
| -11 | 0.0278 | -0.3056 | 3.3611 | 
| -10 | 0.0278 | -0.2778 | 2.7778 | 
| -9 | 0.0556 | -0.5000 | 4.5000 | 
| -8 | 0.0556 | -0.4444 | 3.5556 | 
| -7 | 0.0833 | -0.5833 | 4.0833 | 
| -6 | 0.0833 | -0.5000 | 3.0000 | 
| -5 | 0.0833 | -0.4167 | 2.0833 | 
| -4 | 0.0833 | -0.3333 | 1.3333 | 
| -3 | 0.0833 | -0.2500 | 0.7500 | 
| -2 | 0.0833 | -0.1667 | 0.3333 | 
| -1 | 0.0833 | -0.0833 | 0.0833 | 
| 0 | 0.0833 | 0.0000 | 0.0000 | 
| 1 | 0.0556 | 0.0556 | 0.0556 | 
| 2 | 0.0556 | 0.1111 | 0.2222 | 
| 3 | 0.0278 | 0.0833 | 0.2500 | 
| 4 | 0.0278 | 0.1111 | 0.4444 | 
| 1.0000 | -3.5000 | 26.8333 | 
Let Z= X-2Y
Variance of X-2T i.e Var(Z)


Var(Z) = E(Z2) - E(Z)2
E(Z) = -3.5
E(Z2) = 26.8333
Var(Z) = E(Z2) - E(Z)2 = 26.8333 - (-3.5)2 = 14.5833
Variance of X-2Y = 14.5833
Problem 10:
Following the above procedure,
W=X2Y
| 
 W  | 
 P(W)  | 
 WP(W)  | 
| 
 1  | 
 0.0278  | 
 0.0278  | 
| 
 2  | 
 0.0278  | 
 0.0556  | 
| 
 3  | 
 0.0278  | 
 0.0833  | 
| 
 4  | 
 0.0556  | 
 0.2222  | 
| 
 5  | 
 0.0278  | 
 0.1389  | 
| 
 6  | 
 0.0278  | 
 0.1667  | 
| 
 8  | 
 0.0278  | 
 0.2222  | 
| 
 9  | 
 0.0278  | 
 0.2500  | 
| 
 12  | 
 0.0278  | 
 0.3333  | 
| 
 16  | 
 0.0556  | 
 0.8889  | 
| 
 18  | 
 0.0278  | 
 0.5000  | 
| 
 20  | 
 0.0278  | 
 0.5556  | 
| 
 24  | 
 0.0278  | 
 0.6667  | 
| 
 25  | 
 0.0278  | 
 0.6944  | 
| 
 27  | 
 0.0278  | 
 0.7500  | 
| 
 32  | 
 0.0278  | 
 0.8889  | 
| 
 36  | 
 0.0556  | 
 2.0000  | 
| 
 45  | 
 0.0278  | 
 1.2500  | 
| 
 48  | 
 0.0278  | 
 1.3333  | 
| 
 50  | 
 0.0278  | 
 1.3889  | 
| 
 54  | 
 0.0278  | 
 1.5000  | 
| 
 64  | 
 0.0278  | 
 1.7778  | 
| 
 72  | 
 0.0278  | 
 2.0000  | 
| 
 75  | 
 0.0278  | 
 2.0833  | 
| 
 80  | 
 0.0278  | 
 2.2222  | 
| 
 96  | 
 0.0278  | 
 2.6667  | 
| 
 100  | 
 0.0278  | 
 2.7778  | 
| 
 108  | 
 0.0278  | 
 3.0000  | 
| 
 125  | 
 0.0278  | 
 3.4722  | 
| 
 144  | 
 0.0278  | 
 4.0000  | 
| 
 150  | 
 0.0278  | 
 4.1667  | 
| 
 180  | 
 0.0278  | 
 5.0000  | 
| 
 216  | 
 0.0278  | 
 6.0000  | 
| 
 1.0000  | 
 53.0833  | 
