In: Statistics and Probability
Data Set A:
1.32, 1.01, 0, 2.21, 1.69, 1.73, 2.01, 0, 0.73, 0.91, 0, 3.03, 2.22, 1.23, 3.71, 0, 0.45, 2.18, 3.12, 1.91
Data Set B:
0, 0.63, 2.11, 1.37, 0, 1.11, 2.93, 0, 3.11, 2.61, 0, 0.38, 0.98, 1.55, 1.83, 0, 3.46, 2.31, 0, 1.49
- Interpret on comment on the nonparametric estimates of central tendency differences.
Solution:
Hypothesis,
H0 : M1= M2 VS H1 :
M1 not equal to M2
(M = Median)
#R program:
>x=c( 1.32, 1.01, 0, 2.21, 1.69, 1.73, 2.01, 0, 0.73, 0.91,
0, 3.03, 2.22, 1.23, 3.71, 0, 0.45, 2.18, 3.12, 1.91)
> x
[1] 1.32 1.01 0 2.21 1.69 1.73 2.01 0 0.73 0.91 0 3.03
[13] 2.22 1.23 3.71 0, 0.45 2.18 3.12 1.91
>y=c( 0, 0.63, 2.11, 1.37, 0, 1.11, 2.93, 0, 3.11, 2.61, 0,
0.38, 0.98, 1.55, 1.83, 0, 3.46, 2.31, 0, 1.49 )
> y
[1] 0 0.63 2.11 1.37 0 1.11 2.93 0 3.11 2.61 0 0.38 0.98 [14] 1.55
1.83 0 3.46 2.31 0 1.49
> wilcox.test(x,y)
Wilcoxon rank sum test with continuity correction
data: x and y
W = 220, p-value = 0.595
alternative hypothesis: true location shift is not equal to 0
Output:
The P-value of wilcox Mann-Whitney U-test is 0.595. This is greater
than 0.05. Hence we accept the null hypothesis. Thus we conclude
that the median of first population is equal to median of second
population.