In: Statistics and Probability
Data Set A:
1.32, 1.01, 0, 2.21, 1.69, 1.73, 2.01, 0, 0.73, 0.91, 0, 3.03, 2.22, 1.23, 3.71, 0, 0.45, 2.18, 3.12, 1.91
Data Set B:
0, 0.63, 2.11, 1.37, 0, 1.11, 2.93, 0, 3.11, 2.61, 0, 0.38, 0.98, 1.55, 1.83, 0, 3.46, 2.31, 0, 1.49
- 2-sample parametric estimates
- Using SAS or R, perform the appropriate 95% confidence interval for the difference in means, ratios of variances, and the modified-Levene test.
x1 <- c(1.32, 1.01, 0, 2.21, 1.69, 1.73, 2.01, 0, 0.73, 0.91,
0, 3.03, 2.22, 1.23, 3.71, 0, 0.45, 2.18, 3.12, 1.91)
> x2 <- c(0, 0.63, 2.11, 1.37, 0, 1.11, 2.93, 0, 3.11, 2.61,
0, 0.38, 0.98, 1.55, 1.83, 0, 3.46, 2.31, 0, 1.49)
> t.test(x1,x2)
Welch Two Sample t-test
data: x1 and x2
t = 0.49899, df = 37.884, p-value = 0.6207
alternative hypothesis: true difference in means is not equal to
0
95 percent confidence interval:
-0.548808 0.907808
sample estimates:
mean of x mean of y
1.4730 1.2935
> var.test(x1,x2)
F test to compare two variances
data: x1 and x2
F = 0.89508, num df = 19, denom df = 19, p-value = 0.8116
alternative hypothesis: true ratio of variances is not equal to
1
95 percent confidence interval:
0.3542844 2.2613811
sample estimates:
ratio of variances
0.8950822