In: Math
A machine that puts corn flakes into boxes is adjusted to put an average of 15.1 ounces into each box, with standard deviation of 0.23 ounce. If a random sample of 15 boxes gave a sample standard deviation of 0.35 ounce, do these data support the claim that the variance has increased and the machine needs to be brought back into adjustment? (Use a 0.01 level of significance.)
(i) Give the value of the level of significance.
State the null and alternate hypotheses.
H0: σ2 < 0.0529; H1: σ2 = 0.0529
H0: σ2 = 0.0529; H1: σ2 ≠ 0.0529
H0: σ2 = 0.0529; H1: σ2 < 0.0529
H0: σ2 = 0.0529; H1: σ2 > 0.0529
(ii) Find the sample test statistic. (Round your answer to two
decimal places.)
(iii) Find or estimate the P-value of the sample test
statistic.
P-value > 0.1000
.050 < P-value < 0.100
0.025 < P-value < 0.0500
.010 < P-value < 0.0250
.005 < P-value < 0.010
P-value < 0.005
(iv) Conclude the test.
Since the P-value ≥ α, we fail to reject the null hypothesis.
Since the P-value < α, we reject the null hypothesis.
Since the P-value < α, we fail to reject the null hypothesis
.Since the P-value ≥ α, we reject the null hypothesis.
(v) Interpret the conclusion in the context of the application.
At the 1% level of significance, there is sufficient evidence to conclude that the variance has increased and the machine needs to be adjusted.
At the 1% level of significance, there is insufficient evidence to conclude that the variance has increased and the machine needs to be adjusted.