Question

In: Statistics and Probability

A normal population has a mean of 18.6 and a standard deviation of 3.4. Refer to...

A normal population has a mean of 18.6 and a standard deviation of 3.4. Refer to the table in Appendix B.1. a. Compute the z-value associated with 25.0. (Round the final answer to 2 decimal places.) z = b. What proportion of the population is between 18.6 and 25.0? (Round z-score computation to 2 decimal places and the final answer to 4 decimal places.) Proportion c. What proportion of the population is less than 18.0? (Round z-score computation to 2 decimal places and the final answer to 4 decimal places.) Proportion

Solutions

Expert Solution



Related Solutions

A population has a normal distribution with a mean of 51.4 and a standard deviation of...
A population has a normal distribution with a mean of 51.4 and a standard deviation of 8.4. Assuming n/N is less than or equal to 0.05, the probability, rounded to four decimal places, that the sample mean of a sample size of 18 elements selected from this population will be more than 51.15 is?
A population has a normal distribution with a mean of 51.5 and a standard deviation of...
A population has a normal distribution with a mean of 51.5 and a standard deviation of 9.6. Assuming , the probability, rounded to four decimal places, that the sample mean of a sample of size 23 elements selected from this populations will be more than 51.15 is:
A population of values has a normal distribution with mean of 165.7 and standard deviation of...
A population of values has a normal distribution with mean of 165.7 and standard deviation of 60.2. a) Get the z-score for a value of 163. For this problem you use the z score formula z=x−μσz=x-μσ    b) This z-score tells you how many  the score of 163 is above or below the population mean μμ . c) Find the probability that a randomly selected value is greater than 163.   Part 2 A population of values has a normal distribution with mean...
A normal population has mean =μ63 and standard deviation =σ16 (a) What proportion of the population...
A normal population has mean =μ63 and standard deviation =σ16 (a) What proportion of the population is greater than 100 (b) What is the probability that a randomly chosen value will be less than 80
A normal population has a mean of 19 and a standard deviation of 4. Use Appendix...
A normal population has a mean of 19 and a standard deviation of 4. Use Appendix B.3. Compute the z value associated with 23. (Round your answer to 2 decimal places.) What proportion of the population is between 19 and 23? (Round z-score computation to 2 decimal places and your final answer to 4 decimal places.) What proportion of the population is less than 17? (Round z-score computation to 2 decimal places and your final answer to 4 decimal places.)
A normal population has a mean of 68 and a standard deviation of 6. You select...
A normal population has a mean of 68 and a standard deviation of 6. You select a sample of 52. Compute the probability that the sample mean is (round z score 2 decimals and final answer 4): 1) Less than 67 2) Between 67 and 69.
A normal population has a mean of 81 and a standard deviation of 6. You select...
A normal population has a mean of 81 and a standard deviation of 6. You select a sample of 36. Use Appendix B.1 for the z-values. Compute the probability that the sample mean is: (Round the z-values to 2 decimal places and the final answers to 4 decimal places.) a. Less than 79. Probability             b. Between 79 and 83. Probability             c. Between 83 and 84. Probability             d. Greater than 84. Probability            
1) A normal population has a mean of 100 and a standard deviation of 10. You...
1) A normal population has a mean of 100 and a standard deviation of 10. You select a random sample of 25. What is the probability that the sample mean calculated will be between 98 and 101? a. 0.5328 b. 0.3413 c. .0273 d. 0.682 2) A normal population has a mean of 100 and a standard deviation of 10. You select a random sample of 25. What is the probability that the sample mean calculated will be less than...
A normal population has a mean of 61 and a standard deviation of 4. You select...
A normal population has a mean of 61 and a standard deviation of 4. You select a sample of 38. Compute the probability that the sample mean is: (Round your z values to 2 decimal places and final answers to 4 decimal places.) Less than 60. Between 60 and 62. Between 62 and 63. Greater than 63.
A normal population has a mean of 57 and a standard deviation of 14. You select...
A normal population has a mean of 57 and a standard deviation of 14. You select a random sample of 16. Round to 4 decimal places. a. 33% of the time, the sample average will be less than what specific value? Value    b. 33% of the time, the value of a randomly selected observation will be less than h. Find h. h    c. The probability that the sample average is more than k is 22%. Find k.   k...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT