Question

In: Electrical Engineering

Table 1 Momentum Before and After A Collision Mass of Red Chart 250 kg or 0.25...

Table 1 Momentum Before and After A Collision

Mass of Red Chart 250 kg or 0.25

Mass of Blue Chart 750 kg or 0.75

Cart

Vo (m/s)

Vr (m/s)

Po(kg • m/s)

Po(kg • m/s)

?p(kg • m/s)

Red

0.48

-0.1875

0.12

-0.0468

Blue

0

0.218

0

0.1638

p(sys)o = .12

p(sys)f =.117

?psys =


Compute the ?p(kg • m/s) for the red chart and the blue chart and the ?psys.

Solutions

Expert Solution


Related Solutions

Data Table A Mass of Cart (kg) Impulse (N.s) Velocity (m/s) Momentum (N.s) Change in Momentum...
Data Table A Mass of Cart (kg) Impulse (N.s) Velocity (m/s) Momentum (N.s) Change in Momentum           % Diff. Before After Before After 0.2695 +0.351 - 0.673 +0.659 Data Table B Mass of Cart + mass bar (kg) Impulse (N.s) Velocity (m/s) Momentum (N.s) Change in Momentum % Diff. Before After Before After 0.4695 +0.346 -0.377 +0.372 % Difference= 2×(Change in momentum-Impulse)(Change in momentum+Impulse)×100= Questions What are possible reasons why the change in momentum is different from the measured impulse?...
Two blocks on a frictionless horizontal surface are on a collision course.One block with mass 0.25...
Two blocks on a frictionless horizontal surface are on a collision course.One block with mass 0.25 kg moves at 1 m/s to the right collides with a 0.5 kg mass at rest and the two masses stick together. What is the final speed of the blocks after the collision?           a) -0.33 m/s           b) +0.33 m/s           c) 3.27 m/s           d) 0.67 m/s           e) 0.25 m/s
Ball Collision. A ball with a mass of 0.600 kg is initially at rest. It is...
Ball Collision. A ball with a mass of 0.600 kg is initially at rest. It is struck by a second ball having a mass of 0.400 kg, initially moving with a velocity of 0.250 m/s toward the right along the x-axis. After the collision, the 0.400 kg ball has a velocity of 0.200 m/s at an angle of 36.9° above the x axis in the first quadrant. Both balls move on a frictionless, horizontal surface. Find the magnitude of the...
What is the classical and relativistic momentum of an object with a mass of 5 kg...
What is the classical and relativistic momentum of an object with a mass of 5 kg moving at a speed of 0.8c?
Two objects undergo an elastic collision. Object 1 has a mass of 1.35 kg and object...
Two objects undergo an elastic collision. Object 1 has a mass of 1.35 kg and object 2 a mass of 3 kg. Just prior to the collision, object 1 has a kinetic energy of 77 J and object 2 is at rest. What is the initial velocity of Object 1? What is the total kinetic energy of the two cart system after the collision? What is the total momentum of the two cart system after the collision?
1. (5 pts.) Compare the momentum of the system before impact with the momentum of the...
1. (5 pts.) Compare the momentum of the system before impact with the momentum of the system after impact. Do they agree within the limits of experimental uncertainty? 2. (5 pts.) Compare the kinetic energy of the system before impact with the kinetic energy of the system after impact. How much energy was lost? What happened to it? How well does the experimental ratio agree with the theoretical ratio of the kinetic energy before impact to the kinetic energy after...
Two 2.3 kg bodies, A and B, collide. The velocities before the collision are v →...
Two 2.3 kg bodies, A and B, collide. The velocities before the collision are v → A = ( 34 i ̂ + 29 j ̂ ) m/s and v → B = ( 19 i ̂ + 1.6 j ̂ ) m/s . After the collision, v → A ′ = ( 4.0 i ̂ + 12 j ̂ ) m/s . What are (a) the x-component and (b) the y-component of the final velocity of B? (c) What...
A wheel has a mass of 0.5 kg and a radius of 0.25 m. It rolls...
A wheel has a mass of 0.5 kg and a radius of 0.25 m. It rolls such that the center of mass of the wheel has a velocity of 10 m/s. a) Calculate the angular velocity of the wheel. b) Calculate the translational kinetic energy of the wheel. c) Calculate the rotational kinetic energy of the wheel. d) Calculate the total kinetic energy of the wheel by summing the two kinetic energies
A firework of mass 0.25 kg is launched at an angle of 75 degrees above the...
A firework of mass 0.25 kg is launched at an angle of 75 degrees above the horizontal, pointing due west. The initial speed of the firework is 69 m/s. At the top of its trajectory, it explodes into two pieces of equal mass. One of the pieces takes 2.1 s to fall to the ground, and lands on the ground a distance of 53 m due west from the launch position. Neglect air resistance. (a) Find the velocity of both...
A firework of mass 0.25 kg is launched at an angle of 75o above the horizontal,...
A firework of mass 0.25 kg is launched at an angle of 75o above the horizontal, pointing due west. The initial speed of the firework is 69 m/s. At the top of its trajectory, it explodes into two pieces of equal mass. One of the pieces takes 2.1 s to fall to the ground, and lands on the ground a distance of 53 m due west from the launch position. Neglect air resistance. (a) Find the velocity of both pieces...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT