In: Statistics and Probability
Question 1 contains the actual values for 12 periods (listed in order, 1-12). In Excel, create forecasts for periods 6-13 using each of the following methods: 5 period simple moving average; 4 period weighted moving average (0.63, 0.26, 0.08, 0.03); exponential smoothing (alpha = 0.23 and the forecast for period 5 = 53); linear regression with the equation based on all 12 periods; and quadratic regression with the equation based on all 12 periods. Round all numerical answers to two decimal places.
1.The actual values for 12 periods (shown in order) are:(1) 45 (2) 52 (3) 48 (4) 59 (5) 55 (6) 55 (7) 64 (8) 58 (9) 73 (10) 66 (11) 69 (12) 74
Using a 5 period simple moving average, the forecast for period 13 will be:
2.Using the 4 period weighted moving average, the forecast for period 13 will be:
3.With exponential smoothing, the forecast for period 13 will be:
4.With linear regression, the forecast for period 13 will be:
5.With quadratic regression, the forecast for period 13 will be:
6.Considering only the forecasts for period 6-12, what is the lowest MAD value for any of the methods?
t | y | MA | 4 period | exponential |
1 | 45 | |||
2 | 52 | |||
3 | 48 | |||
4 | 59 | |||
5 | 55 | 55.16 | 53 | |
6 | 55 | 51.8 | 55.39 | 53.46 |
7 | 64 | 53.8 | 55.11 | 53.8142 |
8 | 58 | 56.2 | 60.79 | 56.15693 |
9 | 73 | 58.2 | 59.23 | 56.58084 |
10 | 66 | 61 | 67.84 | 60.35725 |
11 | 69 | 63.2 | 67.12 | 61.65508 |
12 | 74 | 66 | 68.21 | 63.34441 |
13 | 68 | 72.03 | 65.7952 |
1)
68
2)
72.03
3)
65.7952
formulas
t | y | MA | 4 period | exponential |
1 | 45 | |||
=1+A2 | 52 | |||
=1+A3 | 48 | |||
=1+A4 | 59 | |||
=1+A5 | 55 | =0.63*B5+0.26*B4+0.08*B3+0.03*B2 | 53 | |
=1+A6 | 55 | =AVERAGE(B2:B6) | =0.63*B6+0.26*B5+0.08*B4+0.03*B3 | =E6+0.23*(B6-E6) |
=1+A7 | 64 | =AVERAGE(B3:B7) | =0.63*B7+0.26*B6+0.08*B5+0.03*B4 | =E7+0.23*(B7-E7) |
=1+A8 | 58 | =AVERAGE(B4:B8) | =0.63*B8+0.26*B7+0.08*B6+0.03*B5 | =E8+0.23*(B8-E8) |
=1+A9 | 73 | =AVERAGE(B5:B9) | =0.63*B9+0.26*B8+0.08*B7+0.03*B6 | =E9+0.23*(B9-E9) |
=1+A10 | 66 | =AVERAGE(B6:B10) | =0.63*B10+0.26*B9+0.08*B8+0.03*B7 | =E10+0.23*(B10-E10) |
=1+A11 | 69 | =AVERAGE(B7:B11) | =0.63*B11+0.26*B10+0.08*B9+0.03*B8 | =E11+0.23*(B11-E11) |
=1+A12 | 74 | =AVERAGE(B8:B12) | =0.63*B12+0.26*B11+0.08*B10+0.03*B9 | =E12+0.23*(B12-E12) |
13 | =AVERAGE(B9:B13) | =0.63*B13+0.26*B12+0.08*B11+0.03*B10 | =E13+0.23*(B13-E13) | |
4)
linear regression
SUMMARY OUTPUT | |||||
Regression Statistics | |||||
Multiple R | 0.913610467 | ||||
R Square | 0.834684085 | ||||
Adjusted R Square | 0.818152493 | ||||
Standard Error | 4.036661826 | ||||
Observations | 12 | ||||
ANOVA | |||||
df | SS | MS | F | Significance F | |
Regression | 1 | 822.7202797 | 822.7202797 | 50.49024376 | 3.27323E-05 |
Residual | 10 | 162.9463869 | 16.29463869 | ||
Total | 11 | 985.6666667 | |||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | |
Intercept | 44.24242424 | 2.484393613 | 17.80813797 | 6.65437E-09 | 38.70685031 |
t | 2.398601399 | 0.33756262 | 7.105648722 | 3.27323E-05 | 1.64646501 |
y^ = 44.2424 + 2.3986*t
t = 13
y^ = 44.24 + 2.3986*13
= 75.42
5)
quadratic
SUMMARY OUTPUT | ||||||||
Regression Statistics | ||||||||
Multiple R | 0.913611 | |||||||
R Square | 0.834684 | |||||||
Adjusted R Square | 0.797948 | |||||||
Standard Error | 4.255011 | |||||||
Observations | 12 | |||||||
ANOVA | ||||||||
df | SS | MS | F | Significance F | ||||
Regression | 2 | 822.7206 | 411.3603 | 22.72067 | 0.000304 | |||
Residual | 9 | 162.9461 | 18.10512 | |||||
Total | 11 | 985.6667 | ||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | 44.22727 | 4.397676 | 10.05696 | 3.41E-06 | 34.27904 | 54.17551 | 34.27904 | 54.17551 |
t | 2.405095 | 1.555359 | 1.546328 | 0.156428 | -1.11337 | 5.92356 | -1.11337 | 5.92356 |
t^2 | -0.0005 | 0.11647 | -0.00429 | 0.996672 | -0.26397 | 0.262974 | -0.26397 | 0.262974 |
y^ = 44.23 + 2.405 t -0.0005 t^2
y^ = 44.23 + 2.405 *13 -0.0005 *13^2
= 75.41