Question

In: Advanced Math

When we roll one die, we have a 1 in 6 probability of getting any particular...

When we roll one die, we have a 1 in 6 probability of getting any particular number on the die.   When we roll both dice, there are 36 different permutations of total pairs that can be produced, yet only 11 actual distinct values.


Explain how the probability associated with the roll of each individual die in the pair explains the higher variability in the total outcome of the roll of each pair. Discuss how this affects what you think about when we discuss the notion of degree of freedom.


Solutions

Expert Solution

A standard die has six sides printed with little dots numbering 1, 2, 3, 4, 5, and 6. If the die is fair (and we will assume that all of them are), then each of these outcomes is equally likely. Since there are six possible outcomes, the probability of obtaining any side of the die is 1/6. The probability of rolling a 1 is 1/6, the probability of rolling a 2 is 1/6, and so on. But what happens if we add another die? What are the probabilities for rolling two dice?

To correctly determine the probability of a dice roll, we need to know two things:

The size of the sample space or the set of total possible outcomes

How often an event occurs

In probability, an event is a certain subset of the sample space. For example, when only one die is rolled, as in the example above, the sample space is equal to all of the values on the die, or the set (1, 2, 3, 4, 5, 6). Since the die is fair, each number in the set occurs only once. In other words, the frequency of each number is 1. To determine the probability of rolling any one of the numbers on the die, we divide the event frequency (1) by the size of the sample space (6), resulting in a probability of 1/6.

Rolling two fair dice more than doubles the difficulty of calculating probabilities. This is because rolling one die is independent of rolling a second one. One roll has no effect on the other. When dealing with independent events we use the multiplication rule. The use of a tree diagram demonstrates that there are 6 x 6 = 36 possible outcomes from rolling two dice.

Suppose that the first die we roll comes up as a 1. The other die roll could be a 1, 2, 3, 4, 5, or 6. Now suppose that the first die is a 2. The other die roll again could be a 1, 2, 3, 4, 5, or 6. We have already found 12 potential outcomes, and have yet to exhaust all of the possibilities of the first die.Probability

Table of Rolling Two Dice

The possible outcomes of rolling two dice are represented in the table below. Note that the number of total possible outcomes is equal to the sample space of the first die (6) multiplied by the sample space of the second die (6), which is 36.

1 2 3 4 5 6

1 (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)

2 (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)

3 (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)

4 (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)

5 (5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)

6 (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)

Three or More Dice

The same principle applies if we are working on problems involving three dice. We multiply and see that there are 6 x 6 x 6 = 216 possible outcomes. As it gets cumbersome to write the repeated multiplication, we can use exponents to simplify work. For two dice, there are 6^2 possible outcomes. For three dice, there are 6^3 possible outcomes. In general, if we roll n dice, then there are a total of 6^n possible outcomes. In this way the probability associated with the roll of each individual die in the pair has higher variability in the total outcome of the roll of each pair.

In statistics, the degrees of freedom (DF) indicate the number of independent values that can vary in an analysis without breaking any constraints. It is an important idea that appears in many contexts throughout statistics including hypothesis tests, probability distributions, and regression analysis. Learn how this fundamental concept affects the power and precision of your statistical analysis!

Degrees of freedom are the number of independent values that a statistical analysis can estimate. You can also think of it as the number of values that are free to vary as you estimate parameters. As the variability increases, total number of outcome increasea hence number of independent parameters needed to define a system (Degree of freedom) also increases.

Hope it helps :)

Please feel free to ask anything in comments if you are not able to understand anything .


Related Solutions

When we roll one die, we have a 1 in 6 probability of getting any particular...
When we roll one die, we have a 1 in 6 probability of getting any particular number on the die.   When we roll a pair of dice, there are 36 different pairs that can be produced, yet only 11 actual distinct values. Explain how the probability associated with the roll of each individual die in the pair explains the higher variability in the total outcome of the roll of each pair. How do the concepts of permutations and combinations apply...
1. Assume we roll 6 dice. What is the probability that the roll contains: a. 6...
1. Assume we roll 6 dice. What is the probability that the roll contains: a. 6 of the same number b. 3 of one number, 2 of a second number, and 1 non-matching number c. 3 pairs of different numbers
If one dice is rolled (die 1, die 2), find the probability of getting sum less...
If one dice is rolled (die 1, die 2), find the probability of getting sum less than 11? a. What is the probability experiment? Rolling a dice (die 1, die 2) b. What is the event(s)? sum greater than 11 c. What technique can I use to solve this problem? Select an answer d. How do you know you can use that technique? Select an answer f. Find the probability of rolling a sum that is sum less than 11....
Suppose a 6-sided die and a 7-sided die are rolled. What is the probability of getting...
Suppose a 6-sided die and a 7-sided die are rolled. What is the probability of getting sum less than or equal to 5 for the first time on the 4th roll? Show your work to receive credit.
Create a die, which will roll a 6 with probability of 50% and all other numbers...
Create a die, which will roll a 6 with probability of 50% and all other numbers (1-5) with equal probability. What is E(Y) if Y was the outcome of that die? and X is the result of the fair die. sd(Y) var(X-2Y) Please write the code in R
Suppose that we roll a die 166 times. What is the approximate probability that the sum...
Suppose that we roll a die 166 times. What is the approximate probability that the sum of the numbers obtained is between 544 and 606, inclusive. (if possible, could you explain the steps/ state theorems used). Thank you :)
we will roll a standard six-sided die and try to estimate the probability that each number...
we will roll a standard six-sided die and try to estimate the probability that each number will come up. If it is a fair die, each number should come up 1/6th of the time. 1. Collecting the data Put a die in a cup and roll it 30 times. With each roll, record what value came up and list the totals in the table below. For each number the Relative frequency = # of times the number occurs / #...
You roll one blue 6-sided die, and one red 4-sided die. Let A be the event...
You roll one blue 6-sided die, and one red 4-sided die. Let A be the event that the outcome of the red die is twice the outcome on the blue die Let B be the event that the outcome of the blue die is greater than the outcome on the red die Let C be the event that the sum of the two dice is a prime number. a) Find P(B) and P(C) by clearly listing all outcomes in B...
The newest invention is a three-sided die. On any roll of this die, the result is...
The newest invention is a three-sided die. On any roll of this die, the result is 1 with probability 1/2, 2 with probability 1/4, and 3 with probability 1/4. Consider a sequence of six independent rolls of this die. A. Find the probability that exactly two of the rolls result in a 3. B. Given that exactly two of the six rolls resulted in a 1, find the probability that the first roll resulted in a 1. C. We are...
Find the conditional​ probability, in a single roll of two fair​ 6-sided dice, that neither die...
Find the conditional​ probability, in a single roll of two fair​ 6-sided dice, that neither die is a three​,given that the sum is greater than 7.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT