In: Advanced Math
When we roll one die, we have a 1 in 6 probability of getting any particular number on the die. When we roll both dice, there are 36 different permutations of total pairs that can be produced, yet only 11 actual distinct values.
Explain how the probability associated with the roll of each individual die in the pair explains the higher variability in the total outcome of the roll of each pair. Discuss how this affects what you think about when we discuss the notion of degree of freedom.
A standard die has six sides printed with little dots numbering 1, 2, 3, 4, 5, and 6. If the die is fair (and we will assume that all of them are), then each of these outcomes is equally likely. Since there are six possible outcomes, the probability of obtaining any side of the die is 1/6. The probability of rolling a 1 is 1/6, the probability of rolling a 2 is 1/6, and so on. But what happens if we add another die? What are the probabilities for rolling two dice?
To correctly determine the probability of a dice roll, we need to know two things:
The size of the sample space or the set of total possible outcomes
How often an event occurs
In probability, an event is a certain subset of the sample space. For example, when only one die is rolled, as in the example above, the sample space is equal to all of the values on the die, or the set (1, 2, 3, 4, 5, 6). Since the die is fair, each number in the set occurs only once. In other words, the frequency of each number is 1. To determine the probability of rolling any one of the numbers on the die, we divide the event frequency (1) by the size of the sample space (6), resulting in a probability of 1/6.
Rolling two fair dice more than doubles the difficulty of calculating probabilities. This is because rolling one die is independent of rolling a second one. One roll has no effect on the other. When dealing with independent events we use the multiplication rule. The use of a tree diagram demonstrates that there are 6 x 6 = 36 possible outcomes from rolling two dice.
Suppose that the first die we roll comes up as a 1. The other die roll could be a 1, 2, 3, 4, 5, or 6. Now suppose that the first die is a 2. The other die roll again could be a 1, 2, 3, 4, 5, or 6. We have already found 12 potential outcomes, and have yet to exhaust all of the possibilities of the first die.Probability
Table of Rolling Two Dice
The possible outcomes of rolling two dice are represented in the table below. Note that the number of total possible outcomes is equal to the sample space of the first die (6) multiplied by the sample space of the second die (6), which is 36.
1 2 3 4 5 6
1 (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
2 (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
3 (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
4 (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
5 (5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
6 (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)
Three or More Dice
The same principle applies if we are working on problems involving three dice. We multiply and see that there are 6 x 6 x 6 = 216 possible outcomes. As it gets cumbersome to write the repeated multiplication, we can use exponents to simplify work. For two dice, there are 6^2 possible outcomes. For three dice, there are 6^3 possible outcomes. In general, if we roll n dice, then there are a total of 6^n possible outcomes. In this way the probability associated with the roll of each individual die in the pair has higher variability in the total outcome of the roll of each pair.
In statistics, the degrees of freedom (DF) indicate the number of independent values that can vary in an analysis without breaking any constraints. It is an important idea that appears in many contexts throughout statistics including hypothesis tests, probability distributions, and regression analysis. Learn how this fundamental concept affects the power and precision of your statistical analysis!
Degrees of freedom are the number of independent values that a statistical analysis can estimate. You can also think of it as the number of values that are free to vary as you estimate parameters. As the variability increases, total number of outcome increasea hence number of independent parameters needed to define a system (Degree of freedom) also increases.
Hope it helps :)
Please feel free to ask anything in comments if you are not able to understand anything .