Question

In: Advanced Math

1. Suppose ?:? → ? and {??}?∈? is an indexed collection of subsets of set ?....

1. Suppose ?:? → ? and {??}?∈? is an indexed collection of subsets of set ?. Prove ?(⋂ ?? ?∈? ) ⊂ ⋂ ?(??) ?∈? with equality if ? is one-to-one.

2. Compute:

a. ⋂ ∞ ?=1 [?,∞)

b. ⋃ ∞ ?=1 [0,2 − 1 /?]

c. lim sup ?→∞ (−1 + (−1)^? /?,1 +(−1)^? /?)
d. lim inf ?→∞(−1 +(−1)^?/ ?,1 +(−1)^? /?)

Solutions

Expert Solution

1. Let , then there exists , such that .

Now for all , this implies for all , this implies . Thus we get  .

Now suppose assume f is 1-1. Then to show equality we take , for all . This gives us for all there exists , such that , Now since f is 1-1 and  , for any , gives us (say). Thus we get a unique , for all (as ), such that . Now this gives us , hence we get . Hence the equality.

2.

(i)  , as if there exists , then we can find such that this gives us , which is a contradiction hence our claim is established.

(ii) .

Note that clearly for all , we have .

Now suppose take ,then we can find , be such that, (as this follows from the fact and ) this gives us , Hence the equality.

(iii)

(iv)


Related Solutions

Definition 1 (Topological space). Let X be a set. A collection O of subsets of X...
Definition 1 (Topological space). Let X be a set. A collection O of subsets of X is called a topology on the set X if the following properties are satisfied: (1) emptyset ∈ O and X ∈ O. (2) For all A,B ∈ O, we have A∩B ∈ O (stability under intersection). (3) For all index sets I, and for all collections {Ui}i∈I of elements of O (i.e., Ui ∈ O for all i ∈ I), we have U i∈I...
Let Ω be any set and let F be the collection of all subsets of Ω...
Let Ω be any set and let F be the collection of all subsets of Ω that are either countable or have a countable complement. (Recall that a set is countable if it is either finite or can be placed in one-to-one correspondence with the natural numbers N = {1, 2, . . .}.) (a) Show that F is a σ-algebra. (b) Show that the set function given by μ(E)= 0 if E is countable ; μ(E) = ∞ otherwise...
Prove the following stronger variant of Proposition 7.4. Suppose C is collection of connected subsets of...
Prove the following stronger variant of Proposition 7.4. Suppose C is collection of connected subsets of a metric space X and B ∈ C. Show, if for each A ∈ C, A ∩ B not equal ∅, then Γ = ∪{C : C ∈ C} is connected. [Suggestion: Consider the collection D = {C ∪ B : C ∈ C}].
Prove that the union of a finite collection of compact subsets is compact
Prove that the union of a finite collection of compact subsets is compact
Consider the following subsets of the set of all students: A = set of all science...
Consider the following subsets of the set of all students: A = set of all science majors B = set of all art majors C = set of all math majors D = set of all female students Using set operations, describe each of the following sets in terms of A, B, C, and D: a) set of all female physics majors b) set of all students majoring in both science and art
Let {Kn : n ∈ N} be a collection of nonempty compact subsets of R N...
Let {Kn : n ∈ N} be a collection of nonempty compact subsets of R N such that for all n, Kn+1 ⊂ Kn. Show that K = T∞ n=1 Kn is compact. Can K ever be the empty set?
Determine if the following subsets are subspaces: 1. The set of grade 7 polynomials 2. The...
Determine if the following subsets are subspaces: 1. The set of grade 7 polynomials 2. The set of polynomials of degree 5 such that P (0) = 0 3. The set of continuous functions such that f (0) = 2
Prove that the set of all subsets of {1, 4, 9, 16, 25, ...} is uncountable.
Prove that the set of all subsets of {1, 4, 9, 16, 25, ...} is uncountable.
Let X be the set of all subsets of R whose complement is a finite set...
Let X be the set of all subsets of R whose complement is a finite set in R: X = {O ⊂ R | R − O is finite} ∪ {∅} a) Show that T is a topological structure no R. b) Prove that (R, X) is connected. c) Prove that (R, X) is compact.
Let S be a set of n numbers. Let X be the set of all subsets...
Let S be a set of n numbers. Let X be the set of all subsets of S of size k, and let Y be the set of all ordered k-tuples (s1, s2,   , sk) such that s1 < s2 <    < sk. That is, X = {{s1, s2,   , sk} | si  S and all si's are distinct}, and Y = {(s1, s2,   , sk) | si  S and s1 < s2 <    < sk}. (a) Define a one-to-one correspondence f : X → Y. Explain...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT