In: Physics
\(\underline{\text { STEP-II: }}\) For the constructive interference for reflected rays Path difference \(=\mathrm{m} \lambda\) \(2 \mu \mathrm{t}-\frac{\lambda}{2}=\mathrm{m} \lambda\)
That is \(2 \mu t=(2 m+1) \frac{\lambda}{2} \ldots \ldots \ldots . .(1)\)
Where \(t\) is the thickness of the film
\(\underline{\text { STEP-III: }}\)
(a) For minimum thickness \(m=0\) in equation (1) That is \(\begin{aligned} 2 \mu t &=\frac{\lambda}{2} \\ t &=\frac{\lambda}{4 \mu} \\ &=\frac{550 \times 10^{-9} \mathrm{~m}}{4 \times 1.85} \\ &=74.3 \mathrm{~nm} \end{aligned}\)
(b) For the next greatest thickness \(\mathrm{m}=1\) in equation (1)
$$ \text { That is } \begin{aligned} 2 \mu t &=\frac{3 \lambda}{2} \\ t &=\frac{3 \lambda}{4 \mu} \\ &=\frac{3 \times 550 \times 10^{-9} \mathrm{~m}}{4 \times 1.85} \\ &=223 \mathrm{~nm} \end{aligned} $$