Question

In: Advanced Math

Solve equations 1.) y'-y=t/y 2.) y'-(1/t)y=y2sin(t) 3.) y'+y=y2cos(t) 4.) y'-2y=cos(t)/(y1/2)

Solve equations

1.) y'-y=t/y

2.) y'-(1/t)y=y2sin(t)

3.) y'+y=y2cos(t)

4.) y'-2y=cos(t)/(y1/2)

Solutions

Expert Solution


Related Solutions

Solve using Laplace Transform: 1) y'' - 2y' + 5y = cos(2t) - cos(2t)u4pi(t); y(0) =...
Solve using Laplace Transform: 1) y'' - 2y' + 5y = cos(2t) - cos(2t)u4pi(t); y(0) = 0, y'(0) = 0
a) ty’ −y/(1+T) = T,(T>0),y(1)=0 b) y′+(tanT)y=(cos(T))^2,y(0)=π2 Solve the above equations.
a) ty’ −y/(1+T) = T,(T>0),y(1)=0 b) y′+(tanT)y=(cos(T))^2,y(0)=π2 Solve the above equations.
Solve the differential equation: y' + 2y = cos 5x
Solve the differential equation: y' + 2y = cos 5x
x' = -3x + 2y, y' = -10x + 5y +2e^t/cos 2t Solve the system by...
x' = -3x + 2y, y' = -10x + 5y +2e^t/cos 2t Solve the system by variation of parameters
The parametric equations x = x1 + (x2 − x1)t,    y = y1 + (y2 − y1)t...
The parametric equations x = x1 + (x2 − x1)t,    y = y1 + (y2 − y1)t where 0 ≤ t ≤ 1 describe the line segment that joins the points P1(x1, y1) and P2(x2, y2). Use a graphing device to draw the triangle with vertices A(1, 1), B(4, 3), C(1, 6). Find the parametrization, including endpoints, and sketch to check. (Enter your answers as a comma-separated list of equations. Let x and y be in terms of t.)
y''+y=2t+1+(cos(t))^-2
y''+y=2t+1+(cos(t))^-2
Solve the differential equation y''+y'-2y=3, y(0)=2, y'(0) = -1
Solve the differential equation y''+y'-2y=3, y(0)=2, y'(0) = -1
Solve the system of equations: x+y^2=6y x-2y=-5
Solve the system of equations: x+y^2=6y x-2y=-5
The cycloid has parametric equations x = a(t + sin t), y = a(1 - cos...
The cycloid has parametric equations x = a(t + sin t), y = a(1 - cos t). Find the length of the arc from t = 0 to t = pi. [ Hint: 1 + cosA = 2 cos2 A/2 ]. and the arc length of a parametric
Solve the equation below for y(t): y''+2y'-3y=8u(t-3): y(0) = 0; y'(0)=0
Solve the equation below for y(t): y''+2y'-3y=8u(t-3): y(0) = 0; y'(0)=0
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT