Question

In: Math

Solve the system of equations: x+y^2=6y x-2y=-5

Solve the system of equations:

x+y^2=6y

x-2y=-5

Solutions

Expert Solution

The given equations are

------(1)

------(2)

Equation (1) can be written as:

------(3)

Substitute the value of (x-2y) from equation (2) in equation no (3)

The above equation can be written as

Solving the above equation, we get

Therefore,

y = 5, -1

To find the value of x, substitute the values of y in equation (2)

When y = 5, equation (2) becomes

When y = -1, equation (2) becomes

Therefore, x = 5, -7


Related Solutions

($4.7 Cauchy-Euler Equations): Solve the following Euler-type equations (a)–(c). (a) x^2y''-4xy'-6y=0 (b) x^2y''+7xy'+13y=0 (c) x^2y''+3xy'+y=x
($4.7 Cauchy-Euler Equations): Solve the following Euler-type equations (a)–(c). (a) x^2y''-4xy'-6y=0 (b) x^2y''+7xy'+13y=0 (c) x^2y''+3xy'+y=x
Solve the system by Laplace Transform: x'=x-2y y'=5x-y x(0)=-1, y(0)=2
Solve the system by Laplace Transform: x'=x-2y y'=5x-y x(0)=-1, y(0)=2
2)   Solve the system of equations below           dx/dt – 3x – 6y = t^2          ...
2)   Solve the system of equations below           dx/dt – 3x – 6y = t^2           dx/dt + dy/dt – 3y = e^t
3. Solve the following system of equations. 5x- y+ z= -4 2x+ 2y-3z= -6 x-3y+ 2z=...
3. Solve the following system of equations. 5x- y+ z= -4 2x+ 2y-3z= -6 x-3y+ 2z= 0 Select the correct choice below: A. There is one solution. The solution is (     ). B. There are infinitely many solutions. The solutions (   ,z) C. There is no solution. 4. The total number of​ restaurant-purchased meals that the average person will eat in a​ restaurant, in a​ car, or at home in a year is 150. The total number of these meals...
Solve for x,y,z if there if a solution to the given system of linear equations: x...
Solve for x,y,z if there if a solution to the given system of linear equations: x - 3y - 2z = -3 3x + 2y - z = 12 -x - y + 4z = 3
Solve the simultaneous equations: a) x + y = 7, 3x - 2y = 11 b) 7x - 2y = 1, 3x + 4y = 15?
Solve the simultaneous equations:a) x + y = 7,  3x - 2y = 11b) 7x - 2y = 1, 3x + 4y = 15
Question : y''=4y'+8y=0 , (y''-4y'+13y)^2=0 , (y''+2y'+2y)^2=0 , y''-6y'+13y=0,y(0)=3 , y'(0)=13 , 2y''-6y'+17y=0,y(0)=2, y'(0)=13
Question : y''=4y'+8y=0 , (y''-4y'+13y)^2=0 , (y''+2y'+2y)^2=0 , y''-6y'+13y=0,y(0)=3 , y'(0)=13 , 2y''-6y'+17y=0,y(0)=2, y'(0)=13
5. Equations of the form y’ = P(x)*y^2 + Q(x)*y + R(x) are called Riccati equations....
5. Equations of the form y’ = P(x)*y^2 + Q(x)*y + R(x) are called Riccati equations. i) If we know a solution y = φ(x) of this equation, then any other solution can be written in the form y(x) = φ(x)+ 1/v(x), where v(x) is an unknown function which satisfies a certain linear equation. Using the fact that φ and y both solve the above Riccati equation, find the differential equation that v satisfies. ii) Consider the equation 3y’ +...
5. Equations of the form y’ = P(x)*y^2 + Q(x)*y + R(x) are called Riccati equations....
5. Equations of the form y’ = P(x)*y^2 + Q(x)*y + R(x) are called Riccati equations. i) If we know a solution y = φ(x) of this equation, then any other solution can be written in the form y(x) = φ(x)+ 1/v(x), where v(x) is an unknown function which satisfies a certain linear equation. Using the fact that φ and y both solve the above Riccati equation, find the differential equation that v satisfies. ii) Consider the equation 3y’ +...
Solve the ODE y"+3y'+2y=(cosx)+(x^2)+(e^-1)
Solve the ODE y"+3y'+2y=(cosx)+(x^2)+(e^-1)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT