Question

In: Math

Consider the parametric curve given by the equations x = tsin(t) and y = tcos(t) for...

Consider the parametric curve given by the equations

x = tsin(t) and y = tcos(t) for 0 ≤ t ≤ 1

Find the slope of a tangent line to this curve when t = 1.

Find the arclength of this curve (make sure to do it by integration by parts if you find yourself integrating powers of sec(θ))

Solutions

Expert Solution


Related Solutions

Consider the curve traced out by the parametric equations: { x = 1 + cos(t) y...
Consider the curve traced out by the parametric equations: { x = 1 + cos(t) y = t + sin(t) for 0 ≤ t ≤ 4π. 1. Show that that dy dx = − 1 + cos(t)/sin(t) = − csc(t) − cot(t). 2. Make a Sign Diagram for dy dx to find the intervals of t over which C is increasing or decreasing. • C is increasing on: • C is decreasing on: 3. Show that d2y/dx2 = − csc2...
A curve c is defined by the parametric equations x= t^2 y= t^3-4t a) The curve...
A curve c is defined by the parametric equations x= t^2 y= t^3-4t a) The curve C has 2 tangent lines at the point (6,0). Find their equations. b) Find the points on C where the tangent line is vertical and where it is horizontal.
Consider the line L with parametric equations x = 5t − 2, y = −t +...
Consider the line L with parametric equations x = 5t − 2, y = −t + 4, z= 2t + 5. Consider the plane P given by the equation x+3y−z=6. Find the distance from L to P .
Given the curve C in parametric form : C : x = 2cos t , y...
Given the curve C in parametric form : C : x = 2cos t , y = 2sin t , z = 2t ; 0≤ t ≤ 2pi a) the velocity v(t) b) the speed ds/dt c) the acceleration a(t) d) the unit tangent vector T(t) e) The curvature k and the normal vector N(t) f) the binormal vector B(t) g) The tangential and normal components of accelertation
Find parametric equations for the tangent line to the curve with the given parametric equations at...
Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point.
Sketch the curve given by the parametric equation x= tan(t) , y=sec (t) for -pi/2 <...
Sketch the curve given by the parametric equation x= tan(t) , y=sec (t) for -pi/2 < t < pi/2. Eliminate the parameter "t" and find the Cartesian form of this curve. What type of curve is this? What curve would be good if "t" belong to the interval (pi/2, 3pi/2)?
Consider the parametric equation of a curve: x=cos(t), y= 1- sin(t), 0 ≤ t ≤ π...
Consider the parametric equation of a curve: x=cos(t), y= 1- sin(t), 0 ≤ t ≤ π Part (a): Find the Cartesian equation of the curve by eliminating the parameter. Also, graph the curve and indicate with an arrow the direction in which the curve is traced as the parameter increases. Label any x and y intercepts. Part(b): Find the point (x,y) on the curve with tangent slope 1 and write the equation of the tangent line.
1. Given parametric equations below, find the values of t where the the parametric curve has...
1. Given parametric equations below, find the values of t where the the parametric curve has a horizontal and vertical tangents. a) x=t^2 - t, y= t^2 + t b) x= e^(t/10)cos(t), y= e^(t/10)sin(t) 2. Find the arc length of the graph of the parametric equations on the given intervals. a) x= 4t+2, y = 1-3t , −1 ≤ t ≤ 1 b) x= e^(t/10)cos(t), y= e^(t/10)sin(t), 0 ≤ t ≤ 2π
The cycloid has parametric equations x = a(t + sin t), y = a(1 - cos...
The cycloid has parametric equations x = a(t + sin t), y = a(1 - cos t). Find the length of the arc from t = 0 to t = pi. [ Hint: 1 + cosA = 2 cos2 A/2 ]. and the arc length of a parametric
3. Given the parametric equations x = 3t /1 + t^3 and y = 3t^2 /1...
3. Given the parametric equations x = 3t /1 + t^3 and y = 3t^2 /1 + t^3 . a) Show that the curve produced also satisfies the equation x^3 + y^3 = 3xy. b) Compute the limits of x and y as t approaches −1: i. from the left ii. from the right c) To avoid the issue in part b), graph the curve twice in the same command, once for −5 < t < −1.5 and once for...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT