Question

In: Math

A student records the repair cost for 13 randomly selected TVs. A sample mean of $72.19...

A student records the repair cost for 13 randomly selected TVs. A sample mean of $72.19 and standard deviation of $15.88 are subsequently computed. Determine the 98% confidence interval for the mean repair cost for the TVs. Assume the population is approximately normal.

1) Find the critical value that should be used in constructing the confidence interval. Round you answer to three decimal places.

2) Construct the 98% confidence interval. Round your answer to two decimal places.

Solutions

Expert Solution

Answer a)

The number of degrees of freedom are df = 13 - 1 = 12, and the significance level is α = 0.02.

Based on the provided information, the critical t-value for α = 0.02 and df = 12 is tc​ = 2.681 (Obtained using t-value calculator)

Answer b)

The 98% confidence interval is (60.38, 84.00)


Related Solutions

A student records the repair cost for 39 randomly selected TVs. A sample mean of $52.20...
A student records the repair cost for 39 randomly selected TVs. A sample mean of $52.20 and standard deviation of $22.66 are subsequently computed. Determine the 90% confidence interval for the mean repair cost for the TVs. Assume the population is normally distributed. Step 2 of 2 : Construct the 90% confidence interval. Round your answer to two decimal places.
A manager records the repair cost for 4 randomly selected TVs. A sample mean of $88.46...
A manager records the repair cost for 4 randomly selected TVs. A sample mean of $88.46 and standard deviation of $17.20 are subsequently computed. Determine the 99% confidence interval for the mean repair cost for the TVs. Assume the population is approximately normal. Step 1 of 2: Find the critical value that should be used in constructing the confidence interval. Round your answer to three decimal places.
A manager records the repair cost for 4 randomly selected TVs. A sample mean of $88.46...
A manager records the repair cost for 4 randomly selected TVs. A sample mean of $88.46 and standard deviation of $17.20 are subsequently computed. Determine the 99% confidence interval for the mean repair cost for the TVs. Assume the population is approximately normal. Step 2 of 2: Construct the 99% confidence interval. Round your answer to two decimal places.
A consumer affairs investigator records the repair cost for 4 randomly selected TVs. A sample mean...
A consumer affairs investigator records the repair cost for 4 randomly selected TVs. A sample mean of $75.89 and standard deviation of $13.53 are subsequently computed. Determine the 80% confidence interval for the mean repair cost for the TVs. Assume the population is approximately normal. Step 1 of 2: Find the critical value that should be used in constructing the confidence interval. Round your answer to three decimal places. Step 2 of 2: Construct the 80%80% confidence interval. Round your...
A researcher records the repair cost for 10 10 randomly selected VCRs. A sample mean of...
A researcher records the repair cost for 10 10 randomly selected VCRs. A sample mean of $79.18 $ ⁢ 79.18 and standard deviation of $11.06 $ ⁢ 11.06 are subsequently computed. Determine the 90% 90 % confidence interval for the mean repair cost for the VCRs. Assume the population is approximately normal. Step 1 of 2: Find the critical value that should be used in constructing the confidence interval. Round your answer to three decimal places. Step 2 of 2...
A manager records the repair cost for 29 randomly selected washers. A sample mean of $84.87...
A manager records the repair cost for 29 randomly selected washers. A sample mean of $84.87 and sample standard deviation of $12.34 are subsequently computed. Assume the population is normally distributed. Determine the upper endpoint of a 95% confidence interval estimate of the true mean repair cost. A)84.87 B)88.83 C)86.83 D)30.89 E)89.56
A researcher records the repair cost for 27 randomly selected refrigerators. A sample mean of $97.89...
A researcher records the repair cost for 27 randomly selected refrigerators. A sample mean of $97.89 and standard deviation of $17.53 are subsequently computed. Determine the 90% confidence interval for the mean repair cost for the refrigerators. Assume the population is approximately normal. Step 1 of 2 : Find the critical value that should be used in constructing the confidence interval. Round your answer to three decimal places.
A manager records the repair cost for 29 randomly selected washers. A sample mean of $84.87...
A manager records the repair cost for 29 randomly selected washers. A sample mean of $84.87 and sample standard deviation of $12.34 are subsequently computed. Assume the population is normally distributed. Determine the upper endpoint of a 95% confidence interval estimate of the true mean repair cost. A. 86.83 B. 84.87 C. 89.56 D. 30.89 E. 88.83
A sample of 21 randomly selected student cars have ages with a mean of 7.5 years...
A sample of 21 randomly selected student cars have ages with a mean of 7.5 years and a standard deviation of 3.4 years, while a sample of 32 randomly selected faculty cars have ages with a mean of 5.5 years and a standard deviation of 2.8 years. First, define student cars as Population 1 and faculty cars as Population 2. Thus we have n1=21, n2=32, x¯1=7.5, x¯2=5.5, s1=3.4, s2=2.8, (a) Based on the study data, is there significant evidence that...
A sample of 30 randomly selected student cars have ages with a mean of 7.3 years...
A sample of 30 randomly selected student cars have ages with a mean of 7.3 years and a standard deviation of 3.6 years, while a sample of 19 randomly selected faculty cars have ages with a mean of 5 years and a standard deviation of 3.7 years. 1. Use a 0.01 significance level to test the claim that student cars are older than faculty cars. (a) The test statistic is ??? (b) The critical value is ??? (c) Is there...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT