In: Statistics and Probability
26-Suppose a simple random sample of size n=36 is obtained from a population with μ=64 and σ=15.
1- P(x->65.5) =
2- P(x->c) = 0.72. Find c.=
3- P(64.3<x-<65.65) =
4-P(|z|<c) = 0.45, Find c.=
5-P(|z|>c) = 0.35. Find c.=
Standard deviation of = 15 / = 2.5
1.
P( 65.5) = P(Z (65.5 - 64) / 2.5)= P(Z 0.6) = 0.2743 (Using Z tables)
2.
P( c) = 0.72
P(Z (c - 64) / 2.5) = 0.72
(c - 64) / 2.5 = -0.5828 (Using Z tables)
c = 64 - 0.5828 * 2.5 = 62.543
3.
P(64.3< < 65.65) = P( < 65.65) - P( < 64.3)
= P(Z < (65.65 - 64) / 2.5) - P(Z < (64.3 - 64) / 2.5)
= P(Z < 0.66) - P(Z < 0.12)
= 0.7454 - 0.5478
= 0.1976
4.
P(|z|<c) = 0.45
P(-c < z < c) = 0.45
P(z < -c) + P(z > c) = 1 - 0.45 = 0.55
P(z > c) = 0.55 / 2 = 0.275 (Due to symmetry of normal distribution)
c = 0.5978 (Using z table)
5.
P(|z|>c) = 0.35
P(z < -c) + P(z > c) = 35
P(z > c) = 0.35 / 2 = 0.175 (Due to symmetry of normal distribution)
c = 0.9346 (Using z table)