In: Physics
radius of the ring R=D2=2.5 mm\mathrm{R}=\frac{D}{2}=2.5 \mathrm{~mm}R=2D=2.5 mm
Current density j=IA\mathrm{j}=\frac{I}{A}j=AI
Here A=\mathrm{A}=A= area of the circualr ring =πr2=\pi \mathrm{r}^{2}=πr2 dA=2πrdrd A=2 \pi r d rdA=2πrdr
Current dI=JdA⇒J(2πrdr)=Jedg(rR)2πrdrd I=J d A \Rightarrow J(2 \pi r d r)=J_{e d g}\left(\frac{r}{R}\right) 2 \pi r d rdI=JdA⇒J(2πrdr)=Jedg(Rr)2πrdr
Itst =2πJedge R(R33)=2πJedge R23I_{\text {tst }}=\frac{2 \pi J_{\text {edge }}}{R}\left(\frac{R^{3}}{3}\right)=\frac{2 \pi J_{\text {edge }} R^{2}}{3}Itst =R2πJedge (3R3)=32πJedge R2
Jedge =3Itot 2πR2=3(1.5∗10−3 A)2π(2.5∗10−3 m)2=115 A/m2J_{\text {edge }}=\frac{3 I_{\text {tot }}}{2 \pi R^{2}}=\frac{3\left(1.5^{*} 10^{-3} \mathrm{~A}\right)}{2 \pi\left(2.5^{*} 10^{-3} \mathrm{~m}\right)^{2}}=115 \mathrm{~A} / \mathrm{m}^{2}Jedge =2πR23Itot =2π(2.5∗10−3 m)23(1.5∗10−3 A)=115 A/m2