Question

In: Physics

Find the wavelength (in nm) of a photon whose energy is 9.00 × 10-19 J.

Find the wavelength (in nm) of a photon whose energy is 9.00 × 10-19 J.

Solutions

Expert Solution

Given data

                 Energy(E)=9.00*10^(-19)

                 We know(E)=hf   ( f=c/lamda)

                 So      E=hc/lamda

                 Lamda =hc/E

                             =(6.63)*^10(-34)*(3)*10(^8)/(9.00)*10^(-19)

                              =(6.63)*(3)*(10)^(-26)(/9.00)*(10)^(-19)

                              =(19.89/9.00)*10(-7)

                              =2.21*10(-7) meters

                               =221 nm


Related Solutions

A. Determine the wavelength of a photon (in nm) whose energy per photon is 2.73 x...
A. Determine the wavelength of a photon (in nm) whose energy per photon is 2.73 x 10-19 J. B. Consider the reaction equation for combustion of C6H8O2. What is the sum of the coefficients for the products? C. Calculate the energy (kJ/mol) of photons of wavelength 615 nm. D. Determine the energy of a photon (in Joules) whose frequency is 6.181 x 1015 Hz.
1)Calculate the wavelength (in nm) of a photon whose energy is 2 eV. 2)Also calculate the...
1)Calculate the wavelength (in nm) of a photon whose energy is 2 eV. 2)Also calculate the wavelength (in nm) of a free electron moving with a kinetic energy of 2 eV.
Calculate the energy (in joules) of (a)a photon with a wavelength of 5.00 × 104 nm...
Calculate the energy (in joules) of (a)a photon with a wavelength of 5.00 × 104 nm (infrared region) and (b)a photon with a wavelength of 52 nm (ultraviolet region). (c)Calculate the kinetic energy of an electron ejected by the photon in part (b) from a metal with a binding energy of 3.7 eV.
It requires a photon with a minimum energy of 4.41 ✕ 10-19 J to emit electrons...
It requires a photon with a minimum energy of 4.41 ✕ 10-19 J to emit electrons from sodium metal. (a) What is the minimum frequency of light necessary to emit electrons from sodium via the photoelectric effect? (b) If sodium is irradiated with light of 389 nm, what is the maximum possible kinetic energy of the emitted electrons? (c) What is the maximum number of electrons that can be freed by a burst of light (λ = 389 nm) whose...
(a) Find the photon energy and wavelength for the series limit (shortest wavelength) in the Balmer...
(a) Find the photon energy and wavelength for the series limit (shortest wavelength) in the Balmer series (nf = 2) for the hydrogen atom. ___________eV _________ nm (b) Calculate the wavelength for the three longest wavelengths in this series. longest ____________nm second longest ____________nm third longest ____________nm
Find the photon energy, frequency, wavelength, and wavenumber for the photon emitted in the n=5 ...
Find the photon energy, frequency, wavelength, and wavenumber for the photon emitted in the n=5  n=3 transition in the hydrogen atom. Is this photon visible? If not is it in the UV or IR portion of the spectrum?
In a Compton scattering experiment, a photon with a wavelength ?=1.50x10-3 nm collide with a stationary...
In a Compton scattering experiment, a photon with a wavelength ?=1.50x10-3 nm collide with a stationary electron. After the collision, the electron recoils at 0.500c a) What is the energy and wavelength of the scattered photon? b) through what angle with respect to the incident direction was the photon scattered? [Hint: Me=0.511 MeV/c2 or Me=9.11x10-31 kg]
An atom in an l=1 state emits a photon of wavelength 500.000 nm as it drops...
An atom in an l=1 state emits a photon of wavelength 500.000 nm as it drops to an l=0 state when there is no external magnetic field. a)Calculate the Zeeman effect splitting (in electron volts) between adjacent energy levels when this atom is placed in an external3.00-Tmagnetic field. (eV) b) List the wavelengths of the 3 spectral lines that could be observed with a high-resolution spectrographas a result of the interaction of the atom with the B field. Hint: you...
An photon with a wavelength in the X-ray region of 0.69 nm undergoes Compton scattering by...
An photon with a wavelength in the X-ray region of 0.69 nm undergoes Compton scattering by colliding with a free electron. 1) Assume the photon just barely grases the electron, so that the deflect angle, θ, can be considered zero. 1)What is the wavelength of the outgoing photon after the collision? λ' = 2)What the energy of the outgoing photon? Eγ = 3)Now assume the photon deflects off at a small angle of 49o. What is the wavelength of the...
An atom in a 3d state emits a photon of wavelength 475.082 nm when it decays...
An atom in a 3d state emits a photon of wavelength 475.082 nm when it decays to a 2p state. (a) What is the energy (in electron volts) of the photon emitted in this transition? (b) Use the selection rules described in Section 41.4 to find the allowed transitions if the atom is now in an external magnetic field of 3.500 T. Ignore the effects of the electron’s spin. (c) For the case in part (b), if the energy of...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT