Question

In: Physics

An atom in an l=1 state emits a photon of wavelength 500.000 nm as it drops...

An atom in an l=1 state emits a photon of wavelength 500.000 nm as it drops to an l=0 state when there is no external magnetic field.

a)Calculate the Zeeman effect splitting (in electron volts) between adjacent energy levels when this atom is placed in an external3.00-Tmagnetic field. (eV)

b) List the wavelengths of the 3 spectral lines that could be observed with a high-resolution spectrographas a result of the interaction of the atom with the B field. Hint: you may use |dE/E| = |dλ/λ|.Find λ1λ2λ3 in nm. Use 6 sig figs for each.

c) Draw an energy diagram showing the 3 different transitions responsible for λ1λ2 and λ

Solutions

Expert Solution


Related Solutions

An atom in a 3d state emits a photon of wavelength 475.082 nm when it decays...
An atom in a 3d state emits a photon of wavelength 475.082 nm when it decays to a 2p state. (a) What is the energy (in electron volts) of the photon emitted in this transition? (b) Use the selection rules described in Section 41.4 to find the allowed transitions if the atom is now in an external magnetic field of 3.500 T. Ignore the effects of the electron’s spin. (c) For the case in part (b), if the energy of...
A ground state hydrogen atom absorbs a photon of light having a wavelength of 93.03 nm....
A ground state hydrogen atom absorbs a photon of light having a wavelength of 93.03 nm. It then gives off a photon having a wavelength of 93 nm. What is the final state of the hydrogen atom? nf= ?
An electron in the hydrogen atom falls from the 2p to 1s state and a photon is emitted. What is the wavelength of the emitted photon (in nm)?
  An electron in the hydrogen atom falls from the 2p to 1s state and a photon is emitted. What is the wavelength of the emitted photon (in nm)? Select one: a. 20 b. 91 c. 122 d. 364 e. 138
After a certain H atom emits a 3740 nm photon, the energy of its electron is...
After a certain H atom emits a 3740 nm photon, the energy of its electron is -8.716 x 10-20 J. What was the electron's energy before photon emission, and what level did it occupy?
what is the wavelength of the longest wavelength photon that a Ground state hydrogen atom can...
what is the wavelength of the longest wavelength photon that a Ground state hydrogen atom can absorb?
A distant galaxy emits light that has a wavelength of 596.8 nm. On earth, the wavelength...
A distant galaxy emits light that has a wavelength of 596.8 nm. On earth, the wavelength of this light is measured to be 601.9 nm. (a) Decide whether this galaxy is approaching or receding from the earth. (b) Find the speed of the galaxy relative to the earth. (Give your answer to 4 significant digits. Use 2.998 × 108 m/s as the speed of light.)
A. Determine the wavelength of a photon (in nm) whose energy per photon is 2.73 x...
A. Determine the wavelength of a photon (in nm) whose energy per photon is 2.73 x 10-19 J. B. Consider the reaction equation for combustion of C6H8O2. What is the sum of the coefficients for the products? C. Calculate the energy (kJ/mol) of photons of wavelength 615 nm. D. Determine the energy of a photon (in Joules) whose frequency is 6.181 x 1015 Hz.
An electron in the n = 5 level of an H atom emits a photon of...
An electron in the n = 5 level of an H atom emits a photon of wavelength 4052.28 nm. To what energy level does the electron move?
a. A relatively rare transition of the hydrogen atom emits a radio photon with with ?...
a. A relatively rare transition of the hydrogen atom emits a radio photon with with ? = 21 cm. This emission line is extremely important to astronomers for two main reasons: it cuts through most gas and dust without being absorbed and, although transition is rare, there is so much hydrogen in space that the 21 cm photons are themselves quite common. Suppose that one such photon from a distant galaxy is measured to have a wavelength of just 11...
Calculate the energy (in joules) of (a)a photon with a wavelength of 5.00 × 104 nm...
Calculate the energy (in joules) of (a)a photon with a wavelength of 5.00 × 104 nm (infrared region) and (b)a photon with a wavelength of 52 nm (ultraviolet region). (c)Calculate the kinetic energy of an electron ejected by the photon in part (b) from a metal with a binding energy of 3.7 eV.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT