In: Statistics and Probability
Boston |
New York |
Philadelphia |
|
182 |
52 |
180 |
|
181 |
192 |
187 |
|
175 |
181 |
187 |
|
188 |
180 |
174 |
|
167 |
172 |
188 |
|
168 |
71 |
179 |
|
176 |
168 |
182 |
|
186 |
176 |
185 |
|
182 |
168 |
172 |
|
176 |
186 |
165 |
a. State the null and research hypothesis
b. Set the level of risk
c. Select the appropriate test
d. Compute the obtained value.
e. Find the critical value
f. Compare the obtained value and the critical value.
g. State your decision.
h. Write the result
Solution
This is a direct application of One-way ANOVA (Analysis of Variance) with equal number of observations per group.
Answers as stipulated in the question are presented below. Back-up Theory and
Detailed Calculations follow at the end.
Null hypothesis: H0: Mean customer wait lines are the same in three branches Vs
Alternative: (Research hypothesis) H1: The three branches differ with respect to mean customer wait lines.
b. Level of risk (Significance Level) = 5% i.e., 0.05
c. Appropriate test statistic: F
d. Obtained value of F = 2.307
e. Critical value = 3.354
f. Obtained value < the critical value.
g. Decision: Accept H0
h. The result: There is not enough evidence to support Research hypothesis that the three branches differ with respect to mean customer wait lines. Answer
Back-up Theory
One-WAY CLASSIFICATION EQUAL # OBSNS PER CELL
Suppose we have data of a 1-way classification ANOVA, with r rows, and n observations per cell.
Let xij represent the jth observation in the ith row, j = 1,2,…,n; i = 1,2,……,r
Then the ANOVA model is: xij = µ + αi + εij, where µ = common effect, αi = effect of ith row, and εij is the error component which is assumed to be Normally Distributed with mean 0 and variance σ2.
Hypotheses:
Null hypothesis: H01: α1 = α2 = ….. = αr = 0 Vs Alternative: H11: at least one αi is different from other αi’s.
Now, to work out the solution,
Terminology:
Row total = xi..= sum over j of xij
Grand total = G = sum over i of xi.
Correction Factor = C = G2/N, where N = total number of observations = r x n
Total Sum of Squares: SST = (sum over i,j of xij2) – C
Row Sum of Squares: SSR = {(sum over i of xi.2)/n} – C
Error Sum of Squares: SSE = SST – SSR
Mean Sum of Squares = Sum of squares/Degrees of Freedom
Degrees of Freedom:
Total: N (i.e., rn) – 1;
Rows: (r - 1);
Error: Total - Row
Fobs: MSR/MSE;
Fcrit: upper α% point of F-Distribution with degrees of freedom n1 and n2, where n1 is the DF for the numerator MS and n2 is the DF for the denominator MS of Fobs
Significance: Fobs is significant if Fobs > Fcrit
Detailed Calculations
Row represents the branch – 1 for Boston, 2 for New York and 3 for Philadelphia
Row |
j = 1 |
2 |
3 |
4 |
5 |
6 |
10 |
xi. |
xi.^2 |
Sumxij^2 |
|||||||||||||
1 |
182 |
181 |
175 |
188 |
167 |
168 |
176 |
1781 |
3171961 |
317639 |
|||||||||||||
2 |
52 |
192 |
181 |
180 |
172 |
71 |
186 |
1546 |
2390116 |
261374 |
|||||||||||||
3 |
180 |
187 |
187 |
174 |
188 |
179 |
165 |
1799 |
3236401 |
324157 |
|||||||||||||
Total |
5126 |
8798478 |
903170 |
||||||||||||||||||||
r |
3 |
n |
10 |
||||||||||||||||||||
N |
30 |
||||||||||||||||||||||
Grand Total G |
5126 |
||||||||||||||||||||||
Correction Factor C |
875863 |
||||||||||||||||||||||
SST |
27307 |
||||||||||||||||||||||
SSR |
3985.3 |
||||||||||||||||||||||
SSE |
23322 |
||||||||||||||||||||||
ANOVA TABLE |
α |
0.05 |
|||||||||||||||||||||
Source |
DF |
SS |
MS |
F |
Fcrit |
p-value |
|||||||||||||||||
Row |
2 |
3985.3 |
1992.633 |
2.306862 |
3.354 |
0.11887 |
|||||||||||||||||
Error |
27 |
23322 |
863.7852 |
||||||||||||||||||||
Total |
29 |
27307 |
941.6368 |
||||||||||||||||||||
DONE