Question

In: Physics

A merry-go-round is a common piece of playground equipment. A 3.0-mm-diameter merry-go-round, which can be modeled...

A merry-go-round is a common piece of playground equipment. A 3.0-mm-diameter merry-go-round, which can be modeled as a disk with a mass of 220 kg, is spinning at 24 rpm. John runs tangent to the merry-go-round at 5.6 m/s, in the same direction that it is turning, and jumps onto the outer edge. John's mass is 30 kg.

Solutions

Expert Solution

(I believe you need final angular velocity of system, if you need anything else do let me know through comments, Also diameter of merry-go-round should be 3.0 m, and not 3.0 mm, please check and confirm that)

Using Angular momentum conservation on system before and after child moves to the center:

Li = Lf

Ii*wi + m*v*R = If*wf

wi = initial angular speed of ride = 24.0 rpm = 24.0*2*pi/60 = 2.513 rad/sec.

wf = final angular speed of ride = ? rpm

Ii = Initial angular momentum of ride = I_disk = 0.5*M*R^2

M = mass of merry-go-round = 220 kg

R = radius of merry-go-round = 3.0 m/2 = 1.5 m

Ii = 0.5*220*1.5^2 = 247.5 kg*m^2

m = mass of child = 30 kg

v = speed of child = 5.6 m/s

If = 0.5*M*R^2 + m*R^2

If = (M/2 + m)*R^2

If = (220/2 + 30)*1.5^2 = 315 kg-m^2

Using these values:

wf = (wi*Ii+m*v*R)/(If)

wf = (2.513*247.5 + 30*5.6*1.5)/315

wf = 2.7745 rad/sec. = 2.7745*60/(2*pi)

wf = 26.49 rpm = final angular velocity

In two significant figure:

wf = 26 rpm

"Let me know if you have any query."


Related Solutions

Consider the child's playground merry-go-round wheel. Merry Go Round If the steel disk has mass of...
Consider the child's playground merry-go-round wheel. Merry Go Round If the steel disk has mass of 200 kg and a radius of 2 meters you can make it spin by applying a force to the rim. This torque increases the angular momentum of the disk. Suppose the force is 20 newtons. How long would you have to apply it to get the wheel spinning 5 times a minute? What would happen to the rate of spin if you then jumped...
A playground merry-go-round of radius ? = 2.0 m has a moment of inertia ? =...
A playground merry-go-round of radius ? = 2.0 m has a moment of inertia ? = 250 kg ⋅ m^2 is rotating at 15 rpm about a frictionless, vertical axle. Facing the axle, a 25-kg child hops onto the merry-goround and manages to sit down on the edge. (a) (10 pts) What is the total angular momentum of the ‘merry-go-round-child’ system before and after the child hops on the the merry-go-round? (b) (10 pts) What is the new angular speed,...
A child of mass 50 kg is standing at the edge of a playground merry-go-round of...
A child of mass 50 kg is standing at the edge of a playground merry-go-round of diameter 3 m. Other children push the merry-go-round faster and faster until the first child's feet begin to slip. (a) If the coefficient of friction between the shoes and the rotating surface is 0.2, how long does it take the merry-go-round to make one revolution? (b) How fast is the first child traveling when he begins to slip? (c) What is the angle between...
1.) A playground merry-go-round with a radius of 1.75 m and a rotational inertia of 124.5...
1.) A playground merry-go-round with a radius of 1.75 m and a rotational inertia of 124.5 kgm2 is stationary. A robot with a mass of 32.5 kg gets on and walks around the edge of the merry-go-round. How many revolutions around the merry-go-round must the robot make in order for the merry-go-round to make two full revolutions? 2.) A student has an idea for a special record player that uses no electricity. The base is a circular turntable that floats...
a 25.0-kg boy stands 200 m from the center of a frictionless playground merry-go round, which...
a 25.0-kg boy stands 200 m from the center of a frictionless playground merry-go round, which has a moment of inertia of 200. kgm. The boy begins to run in a circular path with a speed of 0.600 m/s relative to the ground .a)Calculate the angular velocity of the merry-go-round b)Calculate the speed of the boy relative to the surface of the merry -round
A playground merry-go-round is set spinning at 0.20 rev/s and then released. It slows to rest...
A playground merry-go-round is set spinning at 0.20 rev/s and then released. It slows to rest in 25 s. (a) Find the average angular acceleration of the merry-go-round during this time. (b) Assuming now that the angular acceleration is constant, how many turns does it make as it comes to rest?
A 25.25 kg child is riding a playground merry-go-round that is rotating at 35.5 rev/min. (A)...
A 25.25 kg child is riding a playground merry-go-round that is rotating at 35.5 rev/min. (A) What net force is acting on her if she is standing on the merry-go-round 1.4 m from its center in newtons? The net force in this situation is sometimes called "centripetal force". (B) What net force (in N) is acting on her if she is standing on an amusement park merry-go-round that rotates at 3.2 rpm and she is 7.6 m from its center?...
A 2.20-m radius playground merry-go-round has a mass of 101.5 kg and is rotating with an...
A 2.20-m radius playground merry-go-round has a mass of 101.5 kg and is rotating with an angular velocity of 0.91 rev/s. What is its angular velocity after a 38.4-kg child gets onto it by grabbing its outer edge? The child is initially at rest. Express your answer in revs/s.
A 4.0 ? diameter merry-go-round (mass 270 ??) is spinning at 15 ???. A child of...
A 4.0 ? diameter merry-go-round (mass 270 ??) is spinning at 15 ???. A child of 35.0 ?? runs tangent to the merry-go-round at 3.0 ?/?, in the same direction that it is turning, and jumps onto the outer edge. Calculate the merry-go-round’s angular velocity, immediately after the child jumps on.
A merry-go-round modeled as a disk of mass M = 9.00  101 kg and radius R =...
A merry-go-round modeled as a disk of mass M = 9.00  101 kg and radius R = 2.20 m is rotating in a horizontal plane about a frictionless vertical axle (see figure). (a) After a student with mass m = 88.0 kg jumps onto the merry-go-round, the system's angular speed decreases to 2.10 rad/s. If the student walks slowly from the edge toward the center, find the angular speed of the system when she reaches a point 0.490 m from the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT