In: Math
The mean cost of a meal for two in a midrange restaurant in City A is $48. How do prices for comparable meals in Hong Kong compare? The file HongKongMeals contains the costs for a sample of 42 recent meals for two in Hong Kong midrange restaurants.
| 22.78 | 33.89 | 22.77 | 18.04 | 23.29 | 35.28 | 42.38 | 
| 36.88 | 38.55 | 41.68 | 25.73 | 34.19 | 31.75 | 25.24 | 
| 26.32 | 19.57 | 36.57 | 32.97 | 36.83 | 30.17 | 37.29 | 
| 25.37 | 24.71 | 28.79 | 32.83 | 43.00 | 35.23 | 34.76 | 
| 33.06 | 27.73 | 31.89 | 38.47 | 39.42 | 40.72 | 43.92 | 
| 36.51 | 45.25 | 33.51 | 29.17 | 30.54 | 26.74 | 37.93 | 
(a)
With 95% confidence, what is the margin of error for the estimated mean cost in dollars for a mid-range meal for two in Hong Kong? (Round your answer to the nearest cent.)
$
(b)
What is the 95% confidence interval estimate of the population mean cost in dollars for a mid-range meal for two in Hong Kong? (Round your answers to the nearest cent.)
$ to $
a)
sample std dev ,    s = √(Σ(X- x̅ )²/(n-1) )
=6.8271
Sample Size ,   n =    42
Sample Mean,    x̅ =   32.6600
Level of Significance ,    α =   
0.05          
degree of freedom=   DF=n-1=   41  
       
't value='   tα/2=   2.020   [Excel
formula =t.inv(α/2,df) ]      
          
       
Standard Error , SE = s/√n =   6.8271   /
√   42   =   1.0534
margin of error , E=t*SE =   2.0195  
*   1.0534   = $ 2.13
b)
confidence interval is       
           
Interval Lower Limit = x̅ - E =    32.66  
-   2.127474   =   30.5325
Interval Upper Limit = x̅ + E =    32.66  
-   2.127474   =   34.7875
95%   confidence interval is (  
30.53   < µ <   34.79  
)