In: Finance
Assume an initial underlying stock price of $20, an exercise price of $20, a time to expiration of 3 months, a risk free rate of 12% and a underlying stock return variance of 16%. If the risk free rate decreased to 6% and assuming other variables are held constant, the call option value would
A) increase
B) remain the same
C) decrease
D) indeterminate from the information given
Std dev = variance^(1/2) = 0.16^0.5 = 0.4 = 40%
As per Black Scholes Model | ||||||
Value of call option = S*N(d1)-N(d2)*K*e^(-r*t) | ||||||
Where | ||||||
S = Current price = | 20 | |||||
t = time to expiry = | 0.25 | |||||
K = Strike price = | 20 | |||||
r = Risk free rate = | 12.0% | |||||
q = Dividend Yield = | 0.00% | |||||
σ = Std dev = | 40% | |||||
d1 = (ln(S/K)+(r-q+σ^2/2)*t)/(σ*t^(1/2) | ||||||
d1 = (ln(20/20)+(0.12-0+0.4^2/2)*0.25)/(0.4*0.25^(1/2)) | ||||||
d1 = 0.25 | ||||||
d2 = d1-σ*t^(1/2) | ||||||
d2 =0.25-0.4*0.25^(1/2) | ||||||
d2 = 0.05 | ||||||
N(d1) = Cumulative standard normal dist. of d1 | ||||||
N(d1) =0.598706 | ||||||
N(d2) = Cumulative standard normal dist. of d2 | ||||||
N(d2) =0.519939 | ||||||
Value of call= 20*0.598706-0.519939*20*e^(-0.12*0.25) | ||||||
Value of call= 1.88 |
As per Black Scholes Model | ||||||
Value of call option = S*N(d1)-N(d2)*K*e^(-r*t) | ||||||
Where | ||||||
S = Current price = | 20 | |||||
t = time to expiry = | 0.25 | |||||
K = Strike price = | 20 | |||||
r = Risk free rate = | 6.0% | |||||
q = Dividend Yield = | 0.00% | |||||
σ = Std dev = | 40% | |||||
d1 = (ln(S/K)+(r-q+σ^2/2)*t)/(σ*t^(1/2) | ||||||
d1 = (ln(20/20)+(0.06-0+0.4^2/2)*0.25)/(0.4*0.25^(1/2)) | ||||||
d1 = 0.175 | ||||||
d2 = d1-σ*t^(1/2) | ||||||
d2 =0.175-0.4*0.25^(1/2) | ||||||
d2 = -0.025 | ||||||
N(d1) = Cumulative standard normal dist. of d1 | ||||||
N(d1) =0.56946 | ||||||
N(d2) = Cumulative standard normal dist. of d2 | ||||||
N(d2) =0.490027 | ||||||
Value of call= 20*0.56946-0.490027*20*e^(-0.06*0.25) | ||||||
Value of call= 1.73 |
Price has decreased with r = 6% compared to r = 12%