In: Finance
what is the price of a European put if the price of
the underlying common stock is $20, the exercise price is $20, the
risk free rate is 8%, the variance of the price of the underlying
stock is 0.36 and the option expires six months from now? use
both
a) a two steps binomial tree
b) the black scholes pricing formula
Fomulas Used :-
u | =EXP(C5*SQRT(C6)) |
d | =EXP(-C5*SQRT(C6)) |
p | =(EXP(C6*C7)-F4)/(F3-F4) |
1-p | =1-F6 |
=D14*$F$3 | |||
=MAX($C$4-E12,0) | |||
=C16*$F$3 | |||
=EXP(-$C$6*$C$7)*((E13*$F$6)+($F$7*E17)) | |||
STOCK | 20 | =D14*$F$4 | |
OPTION | =EXP(-$C$6*$C$7)*((D15*$F$6)+($F$7*D19)) | =MAX($C$4-E16,0) | |
=C16*$F$4 | |||
=EXP(-$C$6*$C$7)*((E17*$F$6)+($F$7*E21)) | |||
=D18*$F$4 | |||
=MAX($C$4-E20,0) |
Black and Scholes Model:-
Formulas Used :-
ln(S0/K) | =IFERROR(LN(C5/C6),"na") |
(r+σ2/2)t | =(C8+(C9^2)/2)*C7 |
σ√t | =C9*SQRT(C7) |
d1 | =IFERROR((C13+C14)/C15,"na") |
d2 | =IFERROR(C16-C15,"na") |
N(d1) | =IFERROR(NORM.S.DIST(C16,TRUE),"na") |
N(d2) | =IFERROR(NORM.S.DIST(C17,TRUE),"na") |
N(-d1) | =IFERROR(NORM.S.DIST(-C16,TRUE),"na") |
N(-d2) | =IFERROR(NORM.S.DIST(-C17,TRUE),"na") |
e-rt | =EXP(-C8*C7) |
I hope my efforts will be fruitful to you