In: Finance
what is the price of a European put if the price of
the underlying common stock is $20, the exercise price is $20, the
risk free rate is 8%, the variance of the price of the underlying
stock is 0.36 and the option expires six months from now? use
both
a) a two steps binomial tree
b) the black scholes pricing formula

Fomulas Used :-
| u | =EXP(C5*SQRT(C6)) | 
| d | =EXP(-C5*SQRT(C6)) | 
| p | =(EXP(C6*C7)-F4)/(F3-F4) | 
| 1-p | =1-F6 | 
| =D14*$F$3 | |||
| =MAX($C$4-E12,0) | |||
| =C16*$F$3 | |||
| =EXP(-$C$6*$C$7)*((E13*$F$6)+($F$7*E17)) | |||
| STOCK | 20 | =D14*$F$4 | |
| OPTION | =EXP(-$C$6*$C$7)*((D15*$F$6)+($F$7*D19)) | =MAX($C$4-E16,0) | |
| =C16*$F$4 | |||
| =EXP(-$C$6*$C$7)*((E17*$F$6)+($F$7*E21)) | |||
| =D18*$F$4 | |||
| =MAX($C$4-E20,0) | 
Black and Scholes Model:-

Formulas Used :-
| ln(S0/K) | =IFERROR(LN(C5/C6),"na") | 
| (r+σ2/2)t | =(C8+(C9^2)/2)*C7 | 
| σ√t | =C9*SQRT(C7) | 
| d1 | =IFERROR((C13+C14)/C15,"na") | 
| d2 | =IFERROR(C16-C15,"na") | 
| N(d1) | =IFERROR(NORM.S.DIST(C16,TRUE),"na") | 
| N(d2) | =IFERROR(NORM.S.DIST(C17,TRUE),"na") | 
| N(-d1) | =IFERROR(NORM.S.DIST(-C16,TRUE),"na") | 
| N(-d2) | =IFERROR(NORM.S.DIST(-C17,TRUE),"na") | 
| e-rt | =EXP(-C8*C7) | 
I hope my efforts will be fruitful to you