Question

In: Statistics and Probability

(Regression Analysis) Consider the simple linear regression model (I) and the corresponding scatter plot with the...

(Regression Analysis)

Consider the simple linear regression model (I) and the corresponding scatter plot with the covariates XX (x-axis) vs residuals (y-axis). What model assumption violations can be diagnosed by this scatter plot?

Solutions

Expert Solution

we can check for independence of residuals,Checking the error variance (hetero-skedasticity )

1) Independence

The pattern structures of residual plots not only help to check the validity of a regression model, but they can also provide hints on how to improve it. For example, a curved pattern in the Residual vs. Independent plot suggests that a higher order term should be introduced to the fitting model.

2)

Checking the error variance

A residuals plot (see the picture below) which has an increasing trend suggests that the error variance increases with the independent variable; while a distribution that reveals a decreasing trend indicates that the error variance decreases with the independent variable. Neither of these distributions are constant variance patterns. Therefore they indicate that the assumption of constant variance is not likely to be true and the regression is not a good one. On the other hand, a horizontal-band pattern suggests that the variance of the residuals is constant.


Related Solutions

Consider the simple linear regression model for which the population regression equation can be written in...
Consider the simple linear regression model for which the population regression equation can be written in conventional notation as: yi= βxi+ui as 1- Derive the Ordinary Least Squares estimator (OLS) of β (i.e. ˆβ) include in your answer details of the proof. 2- Give an interpretation of ˆβ
Consider the simple linear regression model for which the population regression equation can be written in...
Consider the simple linear regression model for which the population regression equation can be written in conventional notation as: yi= βxi+ui as 1- Derive the Ordinary Least Squares estimator (OLS) of β0 (i.e. ˆβ0) include in your answer details of the proof. 2- Give an interpretation of ˆβ0
You are developing a simple linear regression analysis model. The simple correlation coefficient between y and...
You are developing a simple linear regression analysis model. The simple correlation coefficient between y and x is -0.72. What do you know must be true about b1. The least squares estimator of B1? Why? In a multiple linear regression analysis with k = 3. From the t test associated with B1, you conclude that B1 = 0. When you do the f test will you reject or fail to reject the null hypothesis? Why? In a simple bilinear regression...
Consider the simple linear regression mode
Consider the simple linear regression modelYi = β0 + β1xi + εi, where the errors εi are identically and independently distributed as N (0, σ2).(a) If the predictors satisfy x ̄ = 0, show that the least squares estimates βˆ0 and βˆ1 are independently distributed.(b) Let r be the sample correlation coefficient between the predictor and response. Under what conditions will we have βˆ1 = r?(c) Suppose that βˆ1 = r, as in part b), but make no assumptions on...
When we estimate a linear multiple regression model (including a linear simple regression model), it appears...
When we estimate a linear multiple regression model (including a linear simple regression model), it appears that the calculation of the coefficient of determination, R2, for this model can be accomplished by using the squared sample correlation coefficient between the original values and the predicted values of the dependent variable of this model. Is this statement true? If yes, why? If not, why not? Please use either matrix algebra or algebra to support your reasoning.
In a simple linear regression analysis, will the estimate of the regression line be the same...
In a simple linear regression analysis, will the estimate of the regression line be the same if you exchange X and Y? Why or why not?
Discuss the underlying assumptions of a simple linear regression model; multiple regression model; and polynomial regression.
Discuss the underlying assumptions of a simple linear regression model; multiple regression model; and polynomial regression.
Simple Linear Regression: Suppose a simple linear regression analysis provides the following results: b0 = 6.000,    b1...
Simple Linear Regression: Suppose a simple linear regression analysis provides the following results: b0 = 6.000,    b1 = 3.000,    sb0 = 0.750, sb1 = 0.500,  se = 1.364 and n = 24. Use this information to answer the following questions. (a) State the model equation. ŷ = β0 + β1x ŷ = β0 + β1x + β2sb1    ŷ = β0 + β1x1 + β2x2 ŷ = β0 + β1sb1 ŷ = β0 + β1sb1 x̂ = β0 + β1sb1 x̂ = β0 +...
Following is a simple linear regression model: yi = /alpha + /beta xi + /epsilon i...
Following is a simple linear regression model: yi = /alpha + /beta xi + /epsilon i The following results were obtained from some statistical software. R2 = 0.735 syx (regression standard error) = 5.137 n (total observations) = 60 Significance level = 0.05 = 5% Variable Parameter Estimate Std. Err. of Parameter Est. Interecpt 0.325 0.097 Slope of X -1.263 0.309 1. Write the fitted model. (I ALREADY KNOW THE ANSWER TO THIS. I LEFT IT INCASE IT IS NEEDED...
Consider a simple linear regression model with nonstochastic regressor: Yi = β1 + β2Xi + ui...
Consider a simple linear regression model with nonstochastic regressor: Yi = β1 + β2Xi + ui . 1. [3 points] What are the assumptions of this model so that the OLS estimators are BLUE (best linear unbiased estimates)? 2. [4 points] Let βˆ 1 and βˆ 2 be the OLS estimators of β1 and β2. Derive βˆ 1 and βˆ 2. 3. [2 points] Show that βˆ 2 is an unbiased estimator of β2.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT