Question

In: Physics

In a Young's double-slit experiment, a set of parallel slits with a separation of 0.102 mm...

In a Young's double-slit experiment, a set of parallel slits with a separation of 0.102 mm is illuminated by light having a wavelength of 600 nm and the interference pattern observed on a screen 4.50 m from the slits. (a) What is the difference in path lengths from the two slits to the location of a second order bright fringe on the screen?

Solutions

Expert Solution

Given

seperation between slits d = 0.102 nm

                                           = 0.102 * 10 -9 m

wave length of light   ?   = 600 nm

                                     = 600 *10 -9 m

distance between screen and slit   L = 4.5 m

  a) difference in path lengths from the two slits to the location of a second order bright fringe on the screen  

                   ? = d sin ? = m ?

for m =2  

                      ? = 2 ( 600 *10 -9 m )

                          = 1.200 ? m   

b) difference in path lengths from the two slits to the location of the second dark fringe on the screen, away from the center of the pattern

                   ? = ( m + 1/2 ) ?

                       = ( 2 + 1/2 )    ( 600 *10 -9 m )

                        = 1.500 ? m


Related Solutions

In a Young's double-slit experiment, two parallel slits with a slit separation of 0.135 mm are...
In a Young's double-slit experiment, two parallel slits with a slit separation of 0.135 mm are illuminated by light of wavelength 579 nm, and the interference pattern is observed on a screen located 4.15 m from the slits. (a) What is the difference in path lengths from each of the slits to the location of the center of a fifth-order bright fringe on the screen? µm (b) What is the difference in path lengths from the two slits to the...
Explain Young's double slit experiment
Explain Young's double slit experiment
In Young's double-slit experiment, what happens to the spacing between the fringes if (a) the slit...
In Young's double-slit experiment, what happens to the spacing between the fringes if (a) the slit separation is increased? (b) the wavelength of the incident light is decreased? (c) if the distance between the slits and the viewing screen is increased?
Problem 3: Double-slit experiment The monochromatic light diffracts on the two slits which are 0.1 mm...
Problem 3: Double-slit experiment The monochromatic light diffracts on the two slits which are 0.1 mm apart (their size is negligible) and produces an interference pattern on the wall which is 3 m far from the apparatus. a) The distance between the central bright fringe and the first off-center bright fringe is 2 cm. What is the wavelength of the light? Which color is it? b) How many bright and dark fringes could we see on the wall? c) We...
In a double-slit experiment, if the slit separation is increased by a factor of two, what...
In a double-slit experiment, if the slit separation is increased by a factor of two, what happens to the interference pattern shown on the screen? What happens if the wavelength is halved? What happens if the distance to the screen is double? Two small forward-facing speakers are 2.50 m apart. They are both emitting, in phase with each other, a sound of frequency 1100 Hz in a room where the speed of sound is 344 m/s. A woman is standing...
A double-slit diffraction pattern is formed on a distant screen. If the separation between the slits...
A double-slit diffraction pattern is formed on a distant screen. If the separation between the slits decreases, what happens to the distance between interference fringes? Assume the angles involved remain small. The distance between interference fringes remains the same. The effect cannot be determined unless the distance between the slits and the screen is known. The distance between interference fringes also decreases. The distance between interference fringes increases.   
In a young's double slit experiment a) There is no diffraction b) Diffraction is so small...
In a young's double slit experiment a) There is no diffraction b) Diffraction is so small it is not easily seen c) Diffraction is readily apparent in the interference pattern d) Diffraction disappears when the slit separation is integer times the slit width
Describe Young's double slit experiment in detail. What is the purpose of the experiment? What kind...
Describe Young's double slit experiment in detail. What is the purpose of the experiment? What kind of result has been achieved with the experiment?
A double slit separation is 3 mm and is illuminated by a white light. A screen...
A double slit separation is 3 mm and is illuminated by a white light. A screen is placed 3.0 m away to observe the interference pattern. a) What is the angular separation of the 2nd order red (λ=700 nm) and 3rd order violet (λ=400 nm) bright fringe? b) How high is the 4th order fringe for the yellow color (λ=589 nm) on the screen? c) Is it possible to adjust the slit separation so that for the 1st order red...
(1)(A) Young's double slit experiment is one of the quintessential experiments in physics. The availability of...
(1)(A) Young's double slit experiment is one of the quintessential experiments in physics. The availability of low cost lasers in recent years allows us to perform the double slit experiment rather easily in class. Your professor shines a green laser (566 nm) on a double slit with a separation of 0.106 mm. The diffraction pattern shines on the classroom wall 4.0 m away. Calculate the fringe separation between the fourth order and central fringe. (B)Working in lab class you shine...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT