Question

In: Physics

A double-slit diffraction pattern is formed on a distant screen. If the separation between the slits...


A double-slit diffraction pattern is formed on a distant screen. If the separation between the slits decreases, what happens to the distance between interference fringes? Assume the angles involved remain small.
The distance between interference fringes remains the same.
The effect cannot be determined unless the distance between the slits and the screen is known.
The distance between interference fringes also decreases.
The distance between interference fringes increases.   

Solutions

Expert Solution

Concepts and reason

The concept which is used to solve this problem is double-slit diffraction.

Use the relation between wavelength, slit widths, screen distance to find the expression for the distance from the centerline for minimum intensity.

Use the relation between the distance from the centerline for minimum intensity and screen distance to find the correct option from the given statement.

Fundamentals

Diffraction and interference are the phenomenon that differentiates between waves and particles.

Particles do not diffract and interfere but waves do.

When the light passes through the slit, the pattern of the resulting waves can be calculated by considering each point in the gap as a point source from which new waves spread out.

The condition for minimum diffraction pattern is as follows:

Here, is the slit width, n is the order, is the wavelength, and is the angle.

By small angle approximation,

Here, y is the distance from the center for minimum intensity and D is the screen distance.

The condition for minimum diffraction is as follows:

…… (1)

By small angle approximation,

Substitute for in Equation (1).

Rearrange Equation (1) to get y,

The incorrect options are as follows:

• The distance between interference fringes remains the same.

• Unless the distance between the slits and the screen is known, the effect cannot be determined.

• There will be a decrease in the distance between interference fringes.

Expression for the distance from the centerline for minimum intensity is as follows:

From the above expression,

Hence, the correct option is, the distance between the interference fringes increases.

Ans:

Thus, the distance between the interference fringes increases.


Related Solutions

A single-slit diffraction pattern is formed on a distant screen. If the width of the single...
A single-slit diffraction pattern is formed on a distant screen. If the width of the single slit through which light passes is reduced, what happens to the width of the central bright fringe? Assume the angles involved remain small.            The central bright fringe becomes wider.                     The central bright fringe remains the same size.                     The effect cannot be determined unless the distance between the slit and the screen is known.                     The central bright fringe becomes narrower.
The diffraction pattern of two slits is imaged on a screen far from the slits. Which...
The diffraction pattern of two slits is imaged on a screen far from the slits. Which one of the following statements is true? (a) The absolute maximum intensity is located an equal distance from both slits. (b) There is only one local maximum. (c) Destructive interference occurs at a point an equal distance from two slits. (d) There is only one point where destructive interference occurs.
No fringes are seen in a single-slit diffraction pattern if ..... the distance to the screen...
No fringes are seen in a single-slit diffraction pattern if ..... the distance to the screen is greater than the slit width the wavelength is less than the distance to the screen the wavelength is greater than the slit width the screen is far away the wavelength is less than the slit width
How does the single-slit diffraction pattern look in comparison to the double-slit interference pattern? Is it...
How does the single-slit diffraction pattern look in comparison to the double-slit interference pattern? Is it possible to have a double-slit pattern without the single-slit pattern overlaid?
In a Young's double-slit experiment, two parallel slits with a slit separation of 0.135 mm are...
In a Young's double-slit experiment, two parallel slits with a slit separation of 0.135 mm are illuminated by light of wavelength 579 nm, and the interference pattern is observed on a screen located 4.15 m from the slits. (a) What is the difference in path lengths from each of the slits to the location of the center of a fifth-order bright fringe on the screen? µm (b) What is the difference in path lengths from the two slits to the...
In the Fraunhofer diffraction pattern of a double slit, it is found that the fourth secondary...
In the Fraunhofer diffraction pattern of a double slit, it is found that the fourth secondary maximum is missing. What is the ratio of slit width b to slit separation h? If possible please cite the equations used.
The intensity pattern formed by a diffraction grating of N slits is where θ is the...
The intensity pattern formed by a diffraction grating of N slits is where θ is the angle of diffraction. The radiation reaches the grating at normal incidence. Using the formula above and m = 0, ±1, ±2 ... and p = an integer ≠ mN show that the interference maxima occur for β = mπ and minima occur for  β = pπ/N . show that the orders m=pd/a (of interference) are missing if d/a is an integer .
In a Young's double-slit experiment, a set of parallel slits with a separation of 0.102 mm...
In a Young's double-slit experiment, a set of parallel slits with a separation of 0.102 mm is illuminated by light having a wavelength of 600 nm and the interference pattern observed on a screen 4.50 m from the slits. (a) What is the difference in path lengths from the two slits to the location of a second order bright fringe on the screen?
A double slit separation is 3 mm and is illuminated by a white light. A screen...
A double slit separation is 3 mm and is illuminated by a white light. A screen is placed 3.0 m away to observe the interference pattern. a) What is the angular separation of the 2nd order red (λ=700 nm) and 3rd order violet (λ=400 nm) bright fringe? b) How high is the 4th order fringe for the yellow color (λ=589 nm) on the screen? c) Is it possible to adjust the slit separation so that for the 1st order red...
Draw the interference pattern for a double-slit interference situation on a screen. Label the constructive and...
Draw the interference pattern for a double-slit interference situation on a screen. Label the constructive and destructive interference regions clearly with words and show the representation clearly. Indicate where the central maximum is. If a pane of glass is inserted in the gap between the slits and screen, what is the effect on the interference pattern? Draw the new pattern next to the original and explain any changes in the positionings of the pattern. Use words to explain as well...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT