In: Finance
Using the following returns, calculate the arithmetic average returns, the variances, and the standard deviations for X and Y. |
Returns | ||
Year | X | Y |
1 | 12 % | 20 % |
2 | 30 | 41 |
3 | 19 | -7 |
4 | -20 | -21 |
5 | 21 | 49 |
Requirement 1: | |
(a) | Calculate the arithmetic average return for X. |
(Click to select)10.04%15.13%15.50%12.40%14.01% |
(b) | Calculate the arithmetic average return for Y. |
(Click to select)13.28%16.40%20.50%20.01%18.53% |
Requirement 2: | |
(a) | Calculate the variance for X. (Do not round intermediate calculations.) |
(Click to select)0.0369300.0368120.0299130.0461630.046014 |
(b) | Calculate the variance for Y. (Do not round intermediate calculations.) |
(Click to select)0.0852570.1065710.0906800.0734510.113350 |
Requirement 3: | |
(a) |
Calculate the standard deviation for X. (Do not round intermediate calculations.) |
(Click to select)19.09%24.02%15.57%21.45%19.22% |
(b) |
Calculate the standard deviation for Y. (Do not round intermediate calculations.) |
(Click to select)30.11%24.39%37.64%29.20%32.65% |
Requirement 1:
(a)
Arithmetic average return for X = (X1 + X2 + X3+ X4+ X5)/5
= (12 % + 30 % + 19 % - 20 % + 21%)/5
= 62 %/5 = 12.40 %
Hence option “12.40 %” is correct answer.
(b)
Arithmetic average return for Y = (Y1 + Y2 + Y3+ Y4+ Y5)/5
= (20 % + 41 % -7 % - 21 % + 49%)/5
= 82 %/5 = 16.40 %
Hence option “16.40 %” is correct answer.
Requirement 2:
(a)
X |
Mean X m |
Xi – X m |
(Xi – X m)2 |
|
X1 |
0.12 |
-0.004 |
0.000016 |
|
X2 |
0.30 |
0.176 |
0.030976 |
|
X3 |
0.19 |
0.066 |
0.004356 |
|
X4 |
-0.20 |
-0.324 |
0.104976 |
|
X5 |
0.21 |
0.086 |
0.007396 |
|
∑ |
0.62 |
0.1240 |
0.147720 |
Variance for X = ∑ (Xi – X m) 2/ (n -1)
(Xi – X m) 2 = 0.147720
n = 5
Variance for X = 0.147720/ (5 - 1) = 0.147720/4 = 0.03693
Hence option “0.03693” is correct answer.
(b)
Y |
Mean Y m |
Yi – Y m |
(Yi – Y m)2 |
|
Y1 |
0.20 |
0.036 |
0.001296 |
|
Y2 |
0.41 |
0.246 |
0.060516 |
|
Y3 |
-0.07 |
-0.234 |
0.054756 |
|
Y4 |
-0.21 |
-0.374 |
0.139876 |
|
Y5 |
0.49 |
0.326 |
0.106276 |
|
∑ |
0.82 |
0.1640 |
0.362720 |
Variance for Y = ∑ (Yi – Y m) 2 / (n -1)
(Yi – Y m) 2 = 0.362720
n = 5
Variance for Y = 0.362720/ (5 - 1) = 0.362720/4 = 0.09068
Hence option “0.09068” is correct answer.
Requirement 3:
Standard deviation = √ Variance
(a)
Standard deviation for X = √0.03693 = 0.192171798 or 19.22 %
Hence option “19.22 %” is correct answer.
(b)
Standard deviation for Y = √0.09068 = 0.301131201 or 30.11 %
Hence option “30.11 %” is correct answer.