Question

In: Other

Methane gas is diffusing in a straight tube 0.1 m long containing helium at 298 k...

Methane gas is diffusing in a straight tube 0.1 m long containing helium at 298 k and a total pressure of 1.01325 x 10^5 Pa. the partial pressure of CH4 is 1.400 x 10^4 Pa at one end and 1.333 x 10^3 at the other end. Helium is insoluble in one boundary, and hence is non diffusing or stagnant. Calculate the flux of methane in kg mol/s m^2

Solutions

Expert Solution


Related Solutions

A 15.0-L tank containing 1.0 mol of argon gas is at 298 K. (a) Calculate the...
A 15.0-L tank containing 1.0 mol of argon gas is at 298 K. (a) Calculate the initial pressure of the gas and d, the length of the cube containing this volume. (b) Using your value for d, calculate the energies of the two lowest translational energies for the system E1,1,1 and E2,1,1 and their differences  ΔE . (c) The tank is opened and the gas is allowed to expand rapidly into a cubical 2000L room such that there is no heat...
A sample containing 321.5 g of nitrogen gas is expanded isothermally at T=298 K from 1.023dm^3...
A sample containing 321.5 g of nitrogen gas is expanded isothermally at T=298 K from 1.023dm^3 to 57.28dm^3. Calculate q, w, delta U and delta H for four processes assuming N^2 behaves ideally: (a.) in a vacuum (b.) against a constant external pressure equal to the final pressure of the sample (c.) reversibly (d.) adiabatically (non-isothermal)
1. Methane and oxygen exist in a stoichiometric mixture at 500 kPa and 298 K. They...
1. Methane and oxygen exist in a stoichiometric mixture at 500 kPa and 298 K. They are ignited and react at constant volume. Combustion is complete. a. Find the heat removed from the system per kmol of fuel if the final products are at 1500 K. b. What is the final pressure? c. Explain what assumptions made in this calculation are less accurate for constant volume combustion than for the constant pressure combustion we have studied before. d. If the...
A mixture of He and N2 gas is contained in a pipe at 298 K and...
A mixture of He and N2 gas is contained in a pipe at 298 K and 1 atm total pressure which is constant throughout. At one end of the pipe at point 1 the partial pressure of He is 0.6 atm and at the other end, 0.2 m away, the partial pressure is = 0.2 atm. 1. Calculate the flux of He at steady state if DAB of the He-N2 system is 0.684 x 10-4 m2 /s. R = 8.314...
Evaluate the fugacity for a gas of Ar at 100 bar and 298 K
Evaluate the fugacity for a gas of Ar at 100 bar and 298 K
A fuel gas containing methane and ethane is burned with air in a furnace, producing a...
A fuel gas containing methane and ethane is burned with air in a furnace, producing a stack gas at 300.°C and 105 kPa (absolute). You analyze the stack gas and find that it contains no unburned hydrocarbons, oxygen, or carbon monoxide. You also determine the dew-point temperature. (a) Estimate the range of possible dew-point temperatures by determining the dew points when the feed is either pure methane or pure ethane. (b) Estimate the fraction of the feed that is methane...
A fuel gas containing methane and ethane is burned with air in a furnace, producing a...
A fuel gas containing methane and ethane is burned with air in a furnace, producing a stack gas at 300 ° C and 105 kPa (absolute). You analyze the stack gas and find that it contains no unburned hydrocarbons, oxygen, or carbon monoxide. You also determine the dew-point temperature. (a) Estimate the range of possible dew-point temperatures by determining the dew points when the feed is either pure methane or pure ethane. (b) Estimate the fraction of the feed that...
A cylindrical metal can, 0.1 m high and 0.05 m in diameter, contains liquid helium at...
A cylindrical metal can, 0.1 m high and 0.05 m in diameter, contains liquid helium at its normal boiling point of -452.074 degrees Fahrenheit. At this temperature Helium's heat of vaporization is 20.4 kJ/kg. The walls of the helium container are 1.2 cm thick and have a thermal conductivity of 13.889 W/(m K). The helium container is surrounded by liquid nitrogen at a temperature of -327.64 degrees Fahrenheit. A. What is the conductive surface area of the metal cylinder? B....
A cylindrical metal can, 0.1 m high and 0.05 m in diameter, contains liquid helium at...
A cylindrical metal can, 0.1 m high and 0.05 m in diameter, contains liquid helium at its normal boiling point of -452.074 degrees Fahrenheit. At this temperature Helium's heat of vaporization is 20.4 kJ/kg. The walls of the helium container are 1.2 cm thick and have a thermal conductivity of 13.889 W/(m K). The helium container is surrounded by liquid nitrogen at a temperature of -327.64 degrees Fahrenheit. A. What is the conductive surface area of the metal cylinder? B....
A cylindrical metal can, 0.1 m high and 0.05 m in diameter, contains liquid helium at...
A cylindrical metal can, 0.1 m high and 0.05 m in diameter, contains liquid helium at its normal boiling point of -452.074 degrees Fahrenheit. At this temperature Helium's heat of vaporization is 20.4 kJ/kg. The walls of the helium container are 1.2 cm thick and have a thermal conductivity of 13.889 W/(m K). The helium container is surrounded by liquid nitrogen at a temperature of -327.64 degrees Fahrenheit. A. What is the conductive surface area of the metal cylinder? B....
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT