In: Finance
Refer to the table below. 3 Doors, Inc. Down Co. Expected return, E (R) 14 % 7.5 % Standard deviation, σ 26 17 Correlation .38 Using the information provided on the two stocks in the table above, find the expected return and standard deviation on the minimum variance portfolio. (Round your answer to 2 decimal places. Omit the "%" sign in your response.) Expected return % Standard deviation %
| To find the fraction of wealth to invest in 3 Doors that will result in the risky portfolio with minimum variance the following formula to determine the weight of 3 Doors in risky portfolio should be used | 

| Where | ||
| 3 Doors | E[R(d)]= | 14.00% | 
| Down co | E[R(e)]= | 7.50% | 
| 3 Doors | Stdev[R(d)]= | 26.00% | 
| Down co | Stdev[R(e)]= | 17.00% | 
| Var[R(d)]= | 0.06760 | |
| Var[R(e)]= | 0.02890 | |
| T bill | Rf= | 12.00% | 
| Correl | Corr(Re,Rd)= | 0.38 | 
| Covar | Cov(Re,Rd)= | 0.0168 | 
| 3 Doors | Therefore W(*d)= | 0.1924 | 
| Down co | W(*e)=(1-W(*d))= | 0.8076 | 
| Expected return of risky portfolio= | 8.75% | |
| Risky portfolio std dev= | 16.30% | 
| Where | |||||
| Var = std dev^2 | |||||
| Covariance = Correlation* Std dev (r)*Std dev (d) | |||||
| Expected return of the risky portfolio = E[R(d)]*W(*d)+E[R(e)]*W(*e) | |||||
| Risky portfolio standard deviation =( w2A*σ2(RA)+w2B*σ2(RB)+2*(wA)*(wB)*Cor(RA,RB)*σ(RA)*σ(RB))^0.5 | |||||