Question

In: Finance

A stock is currently at $30. Over each of the next two three-months periods, the stock...

A stock is currently at $30. Over each of the next two three-months periods, the stock may move up to a factor 1.20 or down by a factor of 0.80 each period. A call option with strike price of $32 and maturity of six months is available. The current risk-free rate is 4% per year. Is the call option in the money, at money, or out of money. Explain. Find the value of this call option using the binomial tree approach. Find the value of a put option with same strike price and maturity (using either the binomial tree approach or put-call parity to find the put value). Is the put option in the money? Explain. Find the time value of this put option.

Solutions

Expert Solution

Call option is out of money as strike price is more than current share price

For more clarity if above image is not clear

Time value = Call value -intrinsic value = 3.0273-max(30-32,0)=3.0273

Put option is in the of money as strike price is more than current share price

For more clarity if above image is not clear

Time value = Call value -intrinsic value = 4.3937-max(32-30,0)=4.3937-2 =2.3937


Related Solutions

A stock price is currently $100. Over each of the next two three-month periods it is...
A stock price is currently $100. Over each of the next two three-month periods it is expected to go up by 8% or down by 7%. The risk-free interest rate is 5% per annum with continuous compounding. What is the value of a six-month European call option with a strike price of $95?
A stock price is currently $50. Over each of the next two three-month periods, it is...
A stock price is currently $50. Over each of the next two three-month periods, it is expected to increase by 10% or fall by 10%. Consider a six month American put option with a strike price of $49.5. The risk free rate is 6%. Work out the the two step binomial option pricing fully and fill in the asked questions. (Work out using 4 decimals and then enter your answers rounding to two decimals without $ sign) a) S0uu= Blank...
A stock is currently priced at $100. Over each of the next two three month periods...
A stock is currently priced at $100. Over each of the next two three month periods it is expected to increase by 10% or fall by 10%. Consider a six month call option with a strike of $95. The risk free rate is 8% per annum. What is the risk neutral probability p? MC Options: A. 0.601 B. 0.399 C. 0.65 D. 0.55 What is the call price? MC Options: A. 10.87 B. 11.55 C. 9.00 D. 8.60
A stock price is currently $40. Over each of the next two three-month periods it is...
A stock price is currently $40. Over each of the next two three-month periods it is expected to go up by 10% or down by 10% (meaning, precisely, if the stock price at the start of a period is $40, it will go to $40*1.1=$44 or to $40*0.9=$36 at the end of the period and if the stock price at the start of a period is $44, it will go to $44*1.1=$48.44 or to $44*0.9=$39.6 at the end of the...
A stock price is currently $50. Over each of the next two three-month periods it is...
A stock price is currently $50. Over each of the next two three-month periods it is expected to go up by 7% or down by 6%. The risk-free interest rate is 9% per annum with continuous compounding. What is the value of a six-month European call option with a strike price of $49? Equations you may find helpful: p = (e^(rΔt)-d) / (u-d) f = e^(-rΔt) * (fu*p + fd*(1-p)) (required precision 0.01 +/- 0.01)
A stock price is currently $50. Over each of the next two three-month periods it is...
A stock price is currently $50. Over each of the next two three-month periods it is expected to go up by 5% or down by 6%. The risk-free interest rate is 10% per annum with continuous compounding. What is the value of a six-month European call option with a strike price of $49?
A stock price is currently $50. Over each of the next two three-month periods it is...
A stock price is currently $50. Over each of the next two three-month periods it is expected to go up by 6% or down by 6%. The risk-free interest rate is 6% per annum with continuous compounding. What is the value of a six-month American put option with a strike price of $53?
A stock price is currently $60. Over each of the next two three-month periods it is...
A stock price is currently $60. Over each of the next two three-month periods it is expected to up by 6% or down by 5%. The risk-free interest rate is 5% per annum with continuous compounding. What is the value of a six-month European call option with a strike price of $61
A stock price is currently $60. Over each of the next two three-month periods it is...
A stock price is currently $60. Over each of the next two three-month periods it is expected to go up by 6% or down by 5%. The risk-free interest rate is 8% per annum with continuous compounding. What is the value of a six-month European call option with a strike price of $61?
A stock price is currently priced at £110. Over each of the next two three-month periods...
A stock price is currently priced at £110. Over each of the next two three-month periods it is expected to down by 7% or go up by 8%. The risk-free interest rate is 5% per annum with continuous compounding. What is the value of a six-month European call option with a strike price of £105? If possible, please provide a detailed step by step as I would like to fully comprehend it rather than just copying it. Thank you :)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT