Question

In: Mechanical Engineering

Que1.Consider two balls of identical mass. If ball 1 is moving to the right towards stationary...

Que1.Consider two balls of identical mass. If ball 1 is moving to the right towards stationary ball 2 at 1.0 m/s and the two balls collide elastically, what will the final velocities of both balls be? (Hint: consider this simulation.)

Que 2.If the same two balls again undergo a collision, but this time the collision is inelastic, what will the final velocities of both balls be?

Que 3.What are the conditions for elastic and inelastic collisions?

Que 4.Explain how the acceleration of an object can be equal to gravitational acceleration.

Solutions

Expert Solution


Related Solutions

1. A billiard ball moving at 5.80 m/s strikes a stationary ball of the same mass....
1. A billiard ball moving at 5.80 m/s strikes a stationary ball of the same mass. After the collision, the first ball moves at 4.81 m/s at an angle of 34.0° with respect to the original line of motion. Assuming an elastic collision (and ignoring friction and rotational motion), find the struck ball's velocity after the collision. (a)magnitude_____ m/s (b) direction_____ ° (with respect to the original line of motion) 2. A rod of length 36.00 cm has linear density...
Two small, identical steel balls collide completely elastically. Initially, ball 1 is moving with velocity v1...
Two small, identical steel balls collide completely elastically. Initially, ball 1 is moving with velocity v1 directly toward ball 2, and ball 2 is stationary. After the collision, the final velocities of ball 1 and ball 2 are, respectively A) v1 / 2; v1 / 2 B) v1; 2v1 C) -v1; 2v1 D) 0; v1 E) -v1; 0
A moving ball (ball #1) makes a perfectly elastic collision with a stationary ball (ball #2)....
A moving ball (ball #1) makes a perfectly elastic collision with a stationary ball (ball #2). After the collision it is observed that the speed of ball #2 is five times that of ball #1. Determine the angles θ1 and θ2 that the two balls scatter as measured from the initial direction of ball #1. You may assume that the two balls have identical masses, and you may need the identity sin2(x) + cos2(x) = 1. Please explain any concepts...
Two identical balls, Ball A and Ball B are thrown vertically upward. Ball A is thrown...
Two identical balls, Ball A and Ball B are thrown vertically upward. Ball A is thrown with an initial speed of v, and Ball B is thrown with an initial speed of 2v. Which of the following statement is correct? Ignore air resistance. A. The maximum heights of the two balls are equal. B. The maximum height of the second ball is eight times that of the first ball. C. The maximum height of the second ball is 1.41 times...
Ball A has a mass of 4kg and is initially moving at 5m/s. Balls B has...
Ball A has a mass of 4kg and is initially moving at 5m/s. Balls B has a mass of 3kg and is moving at -4m/s. Ball A collides with Ball B head on. After the collision, Ball A is moving at -3m/s, what is the velocity of Ball B is moving at?
A white billiard ball with mass mw = 1.47 kg is moving directly to the right...
A white billiard ball with mass mw = 1.47 kg is moving directly to the right with a speed of v = 2.98 m/s and collides elastically with a black billiard ball with the same mass mb = 1.47 kg that is initially at rest. The two collide elastically and the white ball ends up moving at an angle above the horizontal of θw = 64° and the black ball ends up moving at an angle below the horizontal of...
A white billiard ball with mass mw = 1.54 kg is moving directly to the right...
A white billiard ball with mass mw = 1.54 kg is moving directly to the right with a speed of v = 3.31 m/s and collides elastically with a black billiard ball with the same mass mb = 1.54 kg that is initially at rest. The two collide elastically and the white ball ends up moving at an angle above the horizontal of θw = 60° and the black ball ends up moving at an angle below the horizontal of...
A white billiard ball with mass mw = 1.33 kg is moving directly to the right...
A white billiard ball with mass mw = 1.33 kg is moving directly to the right with a speed of v = 2.96 m/s and collides elastically with a black billiard ball with the same mass mb = 1.33 kg that is initially at rest. The two collide elastically and the white ball ends up moving at an angle above the horizontal of ?w = 29
A white billiard ball with mass mw = 1.5 kg is moving directly to the right...
A white billiard ball with mass mw = 1.5 kg is moving directly to the right with a speed of v = 3 m/s and collides elastically with a black billiard ball with the same mass mb = 1.5 kg that is initially at rest. The two collide elastically and the white ball ends up moving at an angle above the horizontal of θw = 30° and the black ball ends up moving at an angle below the horizontal of...
A ball (Ball A) moving at 10.0 m/s overtakes and collides elastically with an identical ball...
A ball (Ball A) moving at 10.0 m/s overtakes and collides elastically with an identical ball (Ball B) moving at 4.00 m/s in the same direction. 1) Find the speed of Ball A after the collision. 2) Find the speed of Ball B after the collision.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT