Question

In: Mechanical Engineering

Steam at 32 MPa, 520◦C leaves the steam generator of an ideal Rankine cycle modified to...

Steam at 32 MPa, 520◦C leaves the steam generator of an ideal Rankine cycle modified to include three turbine

stages with reheat between the stages. The reheat pressures are 4 and 0.5 MPa, respectively, and steam enters the second-
stage turbine at 440◦C and the third-stage turbine at 360◦C. The condenser pressure is 0.08 bar. Determine for the cycle

a) The net work per unit mass of steam flowing, in kJ/kg.
b) The thermal efficiency.

Solutions

Expert Solution


Related Solutions

Superheated steam at 8 MPa and 480°C leaves the steam generator of a vapor power plant....
Superheated steam at 8 MPa and 480°C leaves the steam generator of a vapor power plant. Heat transfer and frictional effects in the line connecting the steam generator and the turbine reduce the pressure and temperature at the turbine inlet to 7.7 MPa and 440°C, respectively. The pressure at the exit of the turbine is 10 kPa, and the turbine operates adiabatically. Liquid leaves the condenser at 8 kPa, 36°C. The pressure is increased to 8.6 MPa across the pump....
Superheated steam at 8 MPa and 480°C leaves the steam generator of a vapor power plant....
Superheated steam at 8 MPa and 480°C leaves the steam generator of a vapor power plant. Heat transfer and frictional effects in the line connecting the steam generator and the turbine reduce the pressure and temperature at the turbine inlet to 7.3 MPa and 440°C, respectively. The pressure at the exit of the turbine is 10 kPa, and the turbine operates adiabatically. Liquid leaves the condenser at 8 kPa, 36°C. The pressure is increased to 8.6 MPa across the pump....
In an ideal Rankine cycle with reheat, superheated steam vapor enters the turbine at 10 MPa...
In an ideal Rankine cycle with reheat, superheated steam vapor enters the turbine at 10 MPa and 480 °C, while the condenser pressure is 6 kPa. Steam expands through the first-stage turbine to 0.7 MPa and then is reheated to 480 °C a) Calculate the total heat addition, net work of the cycle, heat extraction through condenser, and thermal efficiency of this ideal Rankine cycle with reheat. [25] b) Calculate the same quantities assuming that the pump and each turbine...
Consider steam in an ideal Rankine cycle. The saturated vapor enters the turbine at 8.0 MPa.
 Consider steam in an ideal Rankine cycle. The saturated vapor enters the turbine at 8.0 MPa. Saturated liquid exits the condenser at P = 0.008 MPa. The net power output of the cycle is 100 MW. determine the thermal efficiency of the cycle
In an ideal Rankine cycle with reheat, superheated steam vapor enters the turbine at 10 MPa...
In an ideal Rankine cycle with reheat, superheated steam vapor enters the turbine at 10 MPa and 480 °C, while the condenser pressure is 6 kPa. Steam expands through the first-stage turbine to 0.7 MPa and then is reheated to 480 °C a) For a pressure of 7 bar right after the first stage turbine in the ideal Rankine cycle, create two plots: thermal efficiency as a function of the reheat temperature from 200 °C to 500 °C; and the...
In an ideal Rankine cycle with reheat, superheated steam vapor enters the turbine at 10 MPa...
In an ideal Rankine cycle with reheat, superheated steam vapor enters the turbine at 10 MPa and 480 °C, while the condenser pressure is 6 kPa. Steam expands through the first-stage turbine to 0.7 MPa and then is reheated to 480 °C. Calculate the total heat addition, net work of the cycle, heat extraction through condenser, and thermal efficiency of this ideal Rankine cycle with reheat  
Steam leaves the boiler of a 100 MW Rankine cycle power plant at 400°C and 3.5MPa....
Steam leaves the boiler of a 100 MW Rankine cycle power plant at 400°C and 3.5MPa. The Turbine has an isentropic efficiency of 85% and exhausts at 15 kPa. In the condenser, the water is subcooled to 38°C by lake water at 13°C. The pump isentropic efficiency is 75% Draw and label the T-s diagram (4 points) for this cycle and determine: 1. The cycle’s thermal efficiency (7 points) 2. The mass flow rate of the steam in the boiler...
Steam leaves the boiler of a 100 MW Rankine cycle power plant at 400°C and 3.5MPa....
Steam leaves the boiler of a 100 MW Rankine cycle power plant at 400°C and 3.5MPa. The Turbine has an isentropic efficiency of 85% and exhausts at 15 kPa. In the condenser, the water is subcooled to 38°C by lake water at 13°C. The pump isentropic efficiency is 75%. 1. Draw and label the T-s diagram for this cycle 2. Determine the cycle’s thermal efficiency 3. Determine the mass flow rate of the steam in the boiler (kg/h) 4. Determine...
Steam is the working fluid in an ideal Rankine cycle with superheat and reheat. Steam enters...
Steam is the working fluid in an ideal Rankine cycle with superheat and reheat. Steam enters the high-pressure turbine at 8.0MPa, 480̊C, and expands to 0.6MPa. It is then reheatedto 450̊C before entering the low-pressure turbine where it expands to the condenser pressure of 10kPa. The net power output is 110MW. A closed feedwater heater (CFWH) which uses steam extracted fromthe low-pressure turbine at 0.5MP. The extracted steam leaves the CFWH as a saturated liquid and is then pumped up...
Ideal Reheat Steam Cycle (10) Consider a steam power plant operating on the ideal reheat Rankine...
Ideal Reheat Steam Cycle (10) Consider a steam power plant operating on the ideal reheat Rankine cycle. Steam enters the high-pressure turbine at PH MPa and TH °C and is condensed in the condenser at a pressure of PL kPa. Assume the steam is reheated to the inlet temperature of the high-pressure turbine, and that pump work is NOT negligible. If the moisture content of the steam at the exit of the low-pressure turbine is not to exceed w% percent,...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT