Question

In: Statistics and Probability

A simple random sample of 10 people shopping at Target found a sample mean age of...

A simple random sample of 10 people shopping at Target found a sample mean age of 27 and a sample standard deviation of 4.27 yrs. Can the market research team definitively declare that the mean age of the population of shoppers at Target is less than 30? Suppose that the level of significance is 0.05.

Solutions

Expert Solution

Solution:

Given:

Claim: the mean age of the population of shoppers at Target is less than 30.

Level of significance = 0.05.

Sample size = n = 10

Sample mean =   years

Sample standard deviation = s = 4.27 years.

Step 1) State H0 and H1:

Vs  

Left tailed test .

Step 2) Test statistic:

Step 3) critical value:

df = n - 1 = 10 - 1 = 9

One tail area = Level of significance = 0.05.

t critical value = -1.833

( critical value is negative, since this left tailed test)

Step 4) Decision Rule:

Reject null hypothesis H0, if t test statistic value < t critical value =-1.833, otherwise we fail to reject H0

Since t test statistic value = < t critical value =-1.833, we reject null hypothesis H0.

Step 5) Conclusion:

At 0.05 level of significance, we have sufficient evidence to support the claim of  the market research team that the mean age of the population of shoppers at Target is less than 30.

Thus the market research team can definitively declare that the mean age of the population of shoppers at Target is less than 30


Related Solutions

A simple random sample of size n is drawn. The sample​ mean is found to be...
A simple random sample of size n is drawn. The sample​ mean is found to be 17.6​, and the sample standard​ deviation, s, is found to be 4.7. A). Construct a 95​% confidence interval about if the sample​ size, n, is 51.
A simple random sample of size n is drawn. The sample​ mean is found to be...
A simple random sample of size n is drawn. The sample​ mean is found to be 17.6​, and the sample standard​ deviation, s, is found to be 4.7. Construct a 99​% confidence interval about if the sample​ size, n, is 34.
A simple random sample of size n is drawn. The sample​ mean, x​, is found to...
A simple random sample of size n is drawn. The sample​ mean, x​, is found to be 18.5, and the sample standard​ deviation, s, is found to be 4.6. ​(a) Construct a 95​% confidence interval about μ if the sample​ size, n, is 34. Lower​ bound: ___ Upper​ bound: ___ ​(Use ascending order. Round to two decimal places as​ needed.) ​(b) Construct a 95% confidence interval about μ if the sample​ size, n, is 61. Lower​ bound: ___ Upper​ bound:...
A simple random sample of size n is drawn. The sample mean, x, is found to...
A simple random sample of size n is drawn. The sample mean, x, is found to be 35.1, and the sample standard deviation, s, is found to be 8.7 a) Construct a 90% confidence interval for μ if the sample size, n, is 100. b) Construct a 90% confidence interval for μ if the sample size, n, is 40. How does decreasing the sample size affect the margin of error, E? c) Construct a 96% confidence interval for μ if...
A simple random sample of size n is drawn. The sample​ mean, x ​, is found...
A simple random sample of size n is drawn. The sample​ mean, x ​, is found to be 18.5 ​, and the sample standard​ deviation, s, is found to be 4.3. (a) Construct a 95​% confidence interval about mean if the sample​ size, n, is 35. (b) Construct a 95% confidence interval about mean if the sample​ size, n, is 71. How does increasing the sample size affect the margin of​ error, E? ​(c) Construct a 99​% confidence interval about...
A simple random sample of size n is drawn. The sample​ mean, x is found to...
A simple random sample of size n is drawn. The sample​ mean, x is found to be 19.3 and the sample standard​ deviation, s, is found to be 4.7 a. Construct a 95% confidence interval about mu if the sample​ size, n, is 35
In a simple random sample of 1600 people age 20 and over in a certain​ country,...
In a simple random sample of 1600 people age 20 and over in a certain​ country, the proportion with a certain disease was found to be 0.110 ​(or 11.0​%). Complete parts​ (a) through​ (d) below. a. What is the standard error of the estimate of the proportion of all people in the country age 20 and over with the​ disease? SE est=Answer______ (Round to four decimal places as​ needed.) b. Find the margin of​ error, using a​ 95% confidence​ level,...
In a simple random sample of 1000 people age 20 and over in a certain​ country,...
In a simple random sample of 1000 people age 20 and over in a certain​ country, the proportion with a certain disease was found to be 0.160 ​(or 16.0​%). Complete parts​ (a) through​ (d) below. A. What is the standard error of the estimate of the proportion of all people in the country age 20 and over with the​ disease? B. Find the margin of​ error, using a​ 95% confidence​ level, for estimating this proportion. C. Report the​ 95% confidence...
A simple random sample of size n is drawn. The sample​ mean, x overbarx​, is found...
A simple random sample of size n is drawn. The sample​ mean, x overbarx​, is found to be 18.5​, and the sample standard​ deviation, s, is found to be 4.3. (a) Construct a 95​% confidence interval about muμ if the sample​ size, n, is 34. Lower​ bound: ____ Upper​ bound: ____ ​(b) Construct a 95​% confidence interval about muμ if the sample​ size, n, is 51. Lower​ bound: ____ Upper​ bound: ____ ​(c) Construct a 99​% confidence interval about muμ...
A simple random sample of size n is drawn. The sample​ mean, x overbar​, is found...
A simple random sample of size n is drawn. The sample​ mean, x overbar​, is found to be 18.4​, and the sample standard​ deviation, s, is found to be 4.8. Construct a 95​% confidence interval about μ if the sample​ size, n, is 34.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT