Question

In: Mechanical Engineering

A 750-g collar can slide along the horizontal rod shown. It is attached to an elastic...

A 750-g collar can slide along the horizontal rod shown. It is attached to an elastic cord with an undeformed length of 300 mm and a spring constant of 250 N/m. Knowing that the collar is released from rest at A and neglecting friction, determine the speed of the collar at B and at E. (Round the final answer to two decimal places.)

Solutions

Expert Solution


Related Solutions

A 3 kg collar slides with frictionless along a vertical rod is shown in below Figure....
A 3 kg collar slides with frictionless along a vertical rod is shown in below Figure. The spring is under-formed when the collar A is at the same elevation as point O. The collar is released from rest at y1 = 0.4 m. Determine the velocities of the collar as it first passes a) y2 = 0.0 m, and b) y3 = − 0.4m
A 3.00-kgkg object is free to slide on a horizontal surface. The object is attached to...
A 3.00-kgkg object is free to slide on a horizontal surface. The object is attached to a spring of spring constant 300 N/mN/m , and the other end of the spring is attached to a wall. The object is pulled in the direction away from the wall until the spring is stretched 70.0 mmmm from its relaxed position. The object is not released from rest, but is instead given an initial velocity of 2.50 m/sm/s away from the wall. Ignore...
Two blocks are free to slide along the frictionless wooden track shown below. The block of...
Two blocks are free to slide along the frictionless wooden track shown below. The block of mass m1 = 5.07 kg is released from the position shown, at height h = 5.00 m above the flat part of the track. Protruding from its front end is the north pole of a strong magnet, which repels the north pole of an identical magnet embedded in the back end of the block of mass m2 = 10.3 kg, initially at rest. The...
A mass; m1 = 64 g, sits on a frictionless horizontal surface, and is attached to...
A mass; m1 = 64 g, sits on a frictionless horizontal surface, and is attached to a spring of spring constant k = 51 N/m. The other end of the horizontal spring is attached to a wall; the system is in equilibrium. Another mass; m2 = 18 g, strikes the stationary mass m1, and sticks to it. As a result, the spring is compressed by a distance of 24.5 cm before the masses come to a momentary stop. a) How...
A 50.0 g object is attached to a horizontal spring with a force constant of 5.0...
A 50.0 g object is attached to a horizontal spring with a force constant of 5.0 N/m and released from rest with an amplitude of 20.0cm. What is the velocity of the object when it is halfway to the equilibrium position if the surface is frictionless? (please write out formula used)
Two identical uniform solid spheres are attached by a solid uniform thin rod, as shown in the figure.
Two identical uniform solid spheres are attached by a solid uniform thin rod, as shown in the figure. The rod lies on a line connecting the centers of mass of the two spheres. The axes A, B, C, and D are in the plane of the page (which also contains the centers of mass of the spheres and the rod), while axes E and F (represented by black dots) are perpendicular to the page. (Figure 1).Rank the moments of inertia...
A 190 g mass attached to a horizontal spring oscillates at a frequency of 4.90 Hz....
A 190 g mass attached to a horizontal spring oscillates at a frequency of 4.90 Hz. At t = 0s, the mass is at x = 5.60 cm and vx = -24.0 cm/s. Determine: The period The angular frequency The amplitude The phase constant
A 180 g mass attached to a horizontal spring oscillates at a frequency of 2.80 Hz....
A 180 g mass attached to a horizontal spring oscillates at a frequency of 2.80 Hz. At t = 0 s, the mass is at x=7.00 cm and has vx= -29.0 cm/s. Determine: The maximum speed, the maximum acceleration, the total energy, and the position at t = 4.40 s.
A 175 g mass attached to a horizontal spring oscillates at a frequency of 2.80 Hz....
A 175 g mass attached to a horizontal spring oscillates at a frequency of 2.80 Hz. At t =0s, the mass is at x= 7.00 cm and has vx =− 35.0 cm/s . Determine: The maximum speed. The maximum acceleration. The total energy. The position at t= 2.80 s . In the previous parts, the following was found: period = 0.357 s, angular frequency = 17.59 rad/s, amplitude = 7.277 cm, phase constant = 15.8679 degrees.
A 145 g mass attached to a horizontal spring oscillates at a frequency of 5.50 Hz....
A 145 g mass attached to a horizontal spring oscillates at a frequency of 5.50 Hz. At t = 0s, the mass is at x = 6.60 cm and has vx =− 35.0 cm/s. Determine: a) The maximum speed. b) The maximum acceleration. c) The total energy. d) The position at t = 3.20 s.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT