Question

In: Physics

A 145 g mass attached to a horizontal spring oscillates at a frequency of 5.50 Hz....

A 145 g mass attached to a horizontal spring oscillates at a frequency of 5.50 Hz. At t = 0s, the mass is at x = 6.60 cm and has vx =− 35.0 cm/s.

Determine:

a) The maximum speed.

b) The maximum acceleration.

c) The total energy.

d) The position at t = 3.20 s.

Solutions

Expert Solution


Related Solutions

A 190 g mass attached to a horizontal spring oscillates at a frequency of 4.90 Hz....
A 190 g mass attached to a horizontal spring oscillates at a frequency of 4.90 Hz. At t = 0s, the mass is at x = 5.60 cm and vx = -24.0 cm/s. Determine: The period The angular frequency The amplitude The phase constant
A 180 g mass attached to a horizontal spring oscillates at a frequency of 2.80 Hz....
A 180 g mass attached to a horizontal spring oscillates at a frequency of 2.80 Hz. At t = 0 s, the mass is at x=7.00 cm and has vx= -29.0 cm/s. Determine: The maximum speed, the maximum acceleration, the total energy, and the position at t = 4.40 s.
A 175 g mass attached to a horizontal spring oscillates at a frequency of 2.80 Hz....
A 175 g mass attached to a horizontal spring oscillates at a frequency of 2.80 Hz. At t =0s, the mass is at x= 7.00 cm and has vx =− 35.0 cm/s . Determine: The maximum speed. The maximum acceleration. The total energy. The position at t= 2.80 s . In the previous parts, the following was found: period = 0.357 s, angular frequency = 17.59 rad/s, amplitude = 7.277 cm, phase constant = 15.8679 degrees.
A 155 gg mass attached to a horizontal spring oscillates at a frequency of 3.70 Hz...
A 155 gg mass attached to a horizontal spring oscillates at a frequency of 3.70 Hz . At t =0s, the mass is at x= 6.40 cmcm and has v =− 45.0 cm/s . Determine: a)The maximum speed b)The maximum acceleration. c)The total energy. d)The position at t= 4.80 s
When a 0.710 kg mass oscillates on an ideal spring, the frequency is 1.46 Hz ....
When a 0.710 kg mass oscillates on an ideal spring, the frequency is 1.46 Hz . A. What will the frequency be if 0.260 kg are added to the original mass? Try to solve this problem withoutfinding the force constant of the spring. B. What will the frequency be if 0.260 kg are subtracted from the original mass? Try to solve this problem without finding the force constant of the spring.
A spring mass system with a natural frequency fn = 12 Hz is attached to a...
A spring mass system with a natural frequency fn = 12 Hz is attached to a vibration table. The table is set to vibrate at 16 Hz, 0.5 g maximum acceleration: a. What is the amplitude of the table's motion in inches? b. What is the magnification factor M of this undamped system? c. What is the maximum displacement of the mass assuming no dampening? d. What is the maximum acceleration of the mass assuming the packaging can be modeled...
Drive the formula for the angular frequency of a mass attached to a horizontal spring exexuting...
Drive the formula for the angular frequency of a mass attached to a horizontal spring exexuting simple harmonic motion? Can anyone help me please?
A mass attached to a spring oscillates with a period of 3.15 s. (a) If the...
A mass attached to a spring oscillates with a period of 3.15 s. (a) If the mass starts from rest at x = 0.0480 m and time t = 0, where is it at time t = 6.97 s? m? (b) Is the mass moving in the positive or negative x direction at t = 6.97 s? positive x direction? negative x direction?
A 6.0 kg object attached to a horizontal spring oscillates with an amplitude A = 10...
A 6.0 kg object attached to a horizontal spring oscillates with an amplitude A = 10 cm and a frequency f = 2.2 Hz. (a) What is the force constant of the spring? _____N/m (b) What is the period of the motion? _____s (c) What is the maximum speed of the object? _____m/s (d) What is the maximum acceleration of the object? _____m/s2
A block with a mass M is attached to a horizontal spring with a spring constant...
A block with a mass M is attached to a horizontal spring with a spring constant k. Then attached to this block is a pendulum with a very light string holding a mass m attached to it. What are the two equations of motion? (b) What would these equations be if we assumed small x and φ? (Do note that these equations will turn out a little messy, and in fact, the two equations involve both variables (i.e. they are...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT