In: Chemistry
(a) Find ∆G◦ and K at 298.15 K for the gas-phase reaction
2 SO2(g) + O2(g) 2 SO3(g)
(b) If a stoichiometric mixture of SO2 and O2 is allowed to come to equilibrium at 298.15 K and 1.000bar, find the partial pressure of SO2.
a)
Kp = P-SO3^2 / (PSO2)^2 (PO2)
dG = Grxn = Gprod - Greact =2*(-370.4) - (-300.13*2 + 0) = -140.54 kJ/mol
so..
dG = -RT*ln(Kc)
dG = -8.314*298*ln(Kc) = -140.54*10^3
Kc = exp((-140.54*10^3)/(-8.314*298)) = 4.3182*10^24
Kp = Kc*(RT)^dn
dn = 2-(2+1) = -1
Kp = Kc*(RT)^-1
Kp = (4.3182*10^24)(0.082*298)^-1
Kp = 1.76*10^23
so..
b)
stoichiometric mix of SO2 = O2
to equilbirium and P = 1 bar
find.. SO2:
Kp = 1.76*10^23
P = 1 bar, T = 298.15K
PV = nRT
n/V = P/(RT)
M = (1)/(0.0831*298) = 0.0403815
total molarity = 0.0403815
since stoichiometric:
SO2 = 2x
O2 = x
so
0.0403815/3 = 0.0134605
[SO2] = 2*0.0134605 = 0.026921 M
[O2] = 0.0134605
in equilbirium
[SO2] = 0.026921 -2x
[O2] = 0.0134605-x
[SO3] = 2x
4.3182*10^24 = (2X)^2 / (0.026921 -2x)^2 ( 0.0134605-x)
since x >> 1
then
4.3182*10^24 = (2X)^2 / (0.026921 -2x)^2
sqrt( 4.3182*10^24 ) = 2x / (0.026921 -2x)
x = 0.026921 M
[SO2] = 0 (approx)
Partial Pressure
P = M*RT
P = 0 atm (approx)