Question

In: Statistics and Probability

In Project 1 this Spring, you studied recording times in minutes for a sample of Dr....

In Project 1 this Spring, you studied recording times in minutes for a sample of Dr. Marion’s 33 recordings of Gustav Mahler’s 1st Symphony: 55 49 50 52 53 56 55 53 57 59 52 55 50 50 62 53 58 58 63 51 52 51 54 65 60 57 57 56 54 56 47 48 52

Using σ = 4, and your sample mean, estimate the probabilities that:

i. Mean recording time of 64 recordings exceeds 55 minutes.

ii. Total recording time of 36 recordings exceeds 30 hours.

Solutions

Expert Solution

a)

µ =    54.545                                  
σ = 4
n=   64                                  
                                      
X =   55                                  
                                      
Z =   (X - µ )/(σ/√n) = (   55   -   54.545   ) / ( 4 / √   64   ) =   0.91
                                      
P(X ≥   55   ) = P(Z ≥   0.9 ) =   P ( Z <   -0.91 ) = 0.1814
excel formula for probability from z score is =NORMSDIST(Z)      

b)

Total time = 30 *60 minutes = 1800minutes

Mean = 54,545 * 36 = 1963.62                  

µ =    1963.62                  
σ = 4 * sqrt(36) = 24   
                      
P ( X ≥   1800.00   ) = P( (X-µ)/σ ≥ (1800-1963.62) / 24)              
= P(Z ≥   -6.8175) = P( Z <   6.8175) =

0.9999857

------------------------------------

DEAR STUDENT,

IF YOU HAVE ANY QUERY ASK ME IN THE COMMENT BOX,I AM HERE TO HELPS YOU.PLEASE GIVE ME POSITIVE RATINGS

*****************THANK YOU***************


Related Solutions

Recording times (in minutes) for a sample of Dr. Marion's 33 recordings of Gustav Mahler's 1st...
Recording times (in minutes) for a sample of Dr. Marion's 33 recordings of Gustav Mahler's 1st Symphony: 55 49 50 52 53 56 55 57 59 52 55 50 50 62 53 58 58 63 51 52 51 54 65 60 57 57 56 54 56 47 48 52 Estimate the mean recording time for Mahler’s 1st Symphony. To draw any inferences from these data, what must we assume and why? Find a 95% confidence interval for the mean recording...
1. The waiting times​ (in minutes) of a random sample of 21 people at a bank...
1. The waiting times​ (in minutes) of a random sample of 21 people at a bank have a sample standard deviation of 3.5 minutes. Construct a confidence interval for the population variance sigma squared and the population standard deviation sigma. Use a 99 % level of confidence. Assume the sample is from a normally distributed population. What is the confidence interval for the population variance sigma squared​? 2.You are given the sample mean and the population standard deviation. Use this...
The waiting times​ (in minutes) of a random sample of 20 people at a bank have...
The waiting times​ (in minutes) of a random sample of 20 people at a bank have a sample standard deviation of 3.4 minutes. Construct a confidence interval for the population variance sigma squared and the population standard deviation sigma. Use a 90 % level of confidence. Assume the sample is from a normally distributed population.
2) The following is a sample of times (in minutes) between calls received at a technical...
2) The following is a sample of times (in minutes) between calls received at a technical support help line. 1.1, 1.6, 2.5, 2.6, 2.6, 2.6, 2.6, 2.9, 2.9, 3.1, 3.1, 3.4, 3.4, 3.5, 3.6, 3.7, 3.8, 3.8, 3.8, 3.8, 4.0, 4.1, 4.1, 4.3, 4.3, 4.4, 4.4, 4.5, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.2, 5.2, 5.5, 5.7, 5.8, 5.9, 6.3, 6.4, 6.7, 6.7 a) Construct a dot plot. b) Construct a relative frequency distribution. Use 7 classes. The limits of...
Data on the following slide are the vehicle arrival times at a stop sign. The total time span of the recording was T = 240 minutes.
Data on the following slide are the vehicle arrival times at a stop sign. The total time span of the recording was T = 240 minutes. - What is the average rate l? - Calculate the interarrival times. - Provide visual matches of the data vs. Poisson and data vs. Expo. Use 1-min intervals for the Expo interarrival times Use 10-min intervals for the Poisson [use Excel or any software you like or you can also do it manually] 7.0...
A random sample of 16 pharmacy customers showed the waiting times below (in minutes). Also, the...
A random sample of 16 pharmacy customers showed the waiting times below (in minutes). Also, the sample is from a normal population. Note that σ is unknown. 21 22 22 17 21 17 23 20 20 24 9 22 16 21 22 21 The sample mean is 19.875 and the sample standard deviation is 3.65. Which of the following represents the 80 percent confidence interval for µ? Select one: a. [13.75, 25.25] b. [18.65, 21.10] c. [19.55, 20.425] d. [18.8,...
Given below is simple random sample data for wait times, in minutes, for a call center....
Given below is simple random sample data for wait times, in minutes, for a call center. At the 98% confidence level, calculate the confidence interval estimate for the variance in wait time for the population of all calls at the call center. Assume the population is normally distributed. 12.1 11.5 13.4 16.2 11.3 12.2 11.3
The following sample values represent service times in minutes. For the R-Chart, what are the values...
The following sample values represent service times in minutes. For the R-Chart, what are the values of UCLR and LCLR? Sample # Observ. 1 Observ. 2 Observ. 3 Observ. 4 Observ. 5 1 10.1 10.6 9.8 9.9 10.9 2 9.7 9.5 10.3 9.9 10.5 3 10.1 10.7 9.2 10.1 10.1 4 9.9 9.8 10.5 10.4 10.1 5 10.4 10.1 10.9 9.9 10.3 Group of answer choices 2.2419: 0 10.7596: 9.5364 10.7596: 2.2419 1: 0 9.5364: 1
A random sample of 16 pharmacy customers showed the waiting times below (in minutes). 26 16...
A random sample of 16 pharmacy customers showed the waiting times below (in minutes). 26 16 25 18 17 24 18 23 14 20 10 18 19 13 17 16 Click here for the Excel Data File Find a 90 percent confidence interval for μ, assuming that the sample is from a normal population. (Round your standard deviation answer to 4 decimal places and t-value to 3 decimal places. Round your answers to 3 decimal places.)    The 90% confidence...
Before you begin this discussion, find a coin and flip it 10 times, recording the outcome...
Before you begin this discussion, find a coin and flip it 10 times, recording the outcome of each flip as either heads or tails. Post your results in this discussion, along with the percentage of flips that resulted in heads. We might expect that percentage to be 50%, but the results may vary from student to student (sometimes drastically) in this exercise. As a response to other students, add their data to yours and compute the new percentage of flips...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT