In: Math
Sample of Size 5 |
|||||
108108 |
110110 |
9999 |
9595 |
109109 |
Sample of Size 12 |
|||||
108108 |
110110 |
9999 |
9595 |
109109 |
9292 |
118118 |
111111 |
106106 |
9999 |
9191 |
101101 |
Sample of Size 30 |
|||||
108108 |
110110 |
9999 |
9595 |
109109 |
9292 |
118118 |
111111 |
106106 |
9999 |
9191 |
101101 |
9797 |
9393 |
103103 |
9494 |
9696 |
117117 |
9494 |
9696 |
106106 |
107107 |
9191 |
106106 |
101101 |
119119 |
105105 |
118118 |
107107 |
107107 |
1. What is the median of the sample of size 30?
2.For each data set recalculate the mean and median, assuming that the individual whose IQ is 108, and108 is accidently recorded as 180. What is the median of the new sample of size 30?
Solution
Back-up Theory
Mean (Average)
= (1/n)Σ(i = 1, n)xi.............................................................................................................................................. (1)
Median
Median of a set of values is that value which divides the set into two equal halves in terms of the number
of observations, i.e., half the number of observations lie below the median and half above the median. ...... (2)
Let x(1) , x(2) , x(3) , ……….. , x(n - 1) , x(n) be the ordered set of the given values; i.e.,
x(1) < x(2) < x(3) < ……….. < x(n - 1) < x(n)
Case 1: n is even, say n = 2k
Median = Average of two middle values in the ordered set
= (x(k) + x(k + 1))/2 .......................................................................................................................................... (2a)
Case 2: n is odd, say n = 2k + 1
Median = (k + 1)th value in the ordered set; i.e., x(k + 1) ............................................................................... (2b)
Now, to work out the solution,
Q1
Since n = 30 is even, vide (2a),
Median = [x(15) + x(16)]/2
= (103 + 105)/2
= 104 Answer 1
Ordered set 1 follows at the end.
Q2
Since n = 30 is even, vide (2a),
Median = [x(15) + x(16)]/2
= (103 + 105)/2
= 104 Answer 2
Ordered set 2 follows at the end
DONE
Ordered set 1
i |
x(i) |
1 |
91 |
2 |
91 |
3 |
92 |
4 |
93 |
5 |
94 |
6 |
94 |
7 |
95 |
8 |
96 |
9 |
97 |
10 |
97 |
11 |
99 |
12 |
99 |
13 |
101 |
14 |
101 |
15 |
103 |
16 |
105 |
17 |
106 |
18 |
106 |
19 |
106 |
20 |
107 |
21 |
107 |
22 |
107 |
23 |
108 |
24 |
109 |
25 |
110 |
26 |
111 |
27 |
117 |
28 |
118 |
29 |
118 |
30 |
119 |
Ordered set 2
i |
x(i) |
1 |
91 |
2 |
91 |
3 |
92 |
4 |
93 |
5 |
94 |
6 |
94 |
7 |
95 |
8 |
96 |
9 |
97 |
10 |
97 |
11 |
99 |
12 |
99 |
13 |
101 |
14 |
101 |
15 |
103 |
16 |
105 |
17 |
106 |
18 |
106 |
19 |
106 |
20 |
107 |
21 |
107 |
22 |
107 |
23 |
109 |
24 |
110 |
25 |
111 |
26 |
117 |
27 |
118 |
28 |
118 |
29 |
119 |
30 |
180 |