Question

In: Mechanical Engineering

The condenser of a thermoelectric plant is a shell and tube heat exchanger consisting of a...

The condenser of a thermoelectric plant is a shell and tube heat exchanger consisting of a shell and 30,000 tubes, each of which executes two steps. The tubes are thin- walled with D = 25 mm, and the steam condenses on its outer surface with a convection coefficient of ho = 11 kW/m2 K. The heat transfer that the exchanger must perform is 2,000 MW, and this is carried out by passing cooling water through the pipes at the rate of 30,000 kg/s (the flow per tube is 1 kg/s). The water enters 20 oC, while the steam condenses at 50 oC. Calculate the length of the tube that is required per step.

Solutions

Expert Solution

I have given you the exact heat exchanger design procedures you can use it new problems similar to this. Please forgive me for any calculation mistake and do comment for any short of queries.


Related Solutions

liquid oil is used in the tube side of a shell-and-tube heat exchanger with two shell...
liquid oil is used in the tube side of a shell-and-tube heat exchanger with two shell passes and four tube passes. water is heated in the shell side from 10°C to 50°C while the oil is cooled from 90°C to 60°C. the overall heat transfer coefficient is 53 W/m^2*K. the specific heat of the oil is 2.0 kJ/kg*K. Using the NTU - effectiveness method, calculate the area of the heat exchanger for a total energy transfer of 500 kW. what...
A shell and tube type of heat exchanger with one shell pass and two tube passes...
A shell and tube type of heat exchanger with one shell pass and two tube passes will be designed to provide the given heat transfer rate Q(kW) to cool hot water by using cold river water . The hot water flows through the shell and the cold water flows through the tubes. The inlet and outlet temperatures of the hot water and the cold water are given as Thi, The and Tci, Tce in degrees Celcius. Design the shell and...
A shell and tube type of heat exchanger with one shell pass and two tube passes...
A shell and tube type of heat exchanger with one shell pass and two tube passes will be designed to provide the given heat transfer rate Q(kW) to cool hot water by using cold river water . The hot water flows through the shell and the cold water flows through the tubes. The inlet and outlet temperatures of the hot water and the cold water are given as Thi, The and Tci, Tce in degrees Celcius. Design the shell and...
A shell-and-tube heat exchanger is to used to heat water (in the tube side) from 30...
A shell-and-tube heat exchanger is to used to heat water (in the tube side) from 30 deg C to 40 deg C at a mass flow rate of 4 kg/s. The fluid used for heating (shell side) is water entering at 90 deg C with a mass flow rate of 2 kg/s. A 1-2 STHE is used and the overall heat transfer coefficient based on the inside area is 1390 W/m2-K. The tubes are 1.875 in diameter (inside) and require...
A shell and tube heat exchanger is to be desined by kern's method to heat Toluene....
A shell and tube heat exchanger is to be desined by kern's method to heat Toluene. Toulene: T(in)=100F, T(out)=257F, flowrate=125000Ib/hr P(in)=90Psia composition:100% Toluene. Styrene: T(in)=300F, T(out)=176F, P(in)=50psia composition:100% Styrene What is the mass flow rate of Styrene? Which fluid should be in the shell side and which should be in the tube side and why?
A shell-and-tube heat exchanger with two tube passes and baffled single shell pass is used as...
A shell-and-tube heat exchanger with two tube passes and baffled single shell pass is used as oil cooler. Cooling water at 20°C flows through the tubes at a flow rate of 4.082 kg/s. Engine oil enters the shell side at a flow rate of 10 kg/s. The inlet and outlet temperatures of oil are 90°C and 60°C, respectively. The overall heat transfer coefficient based on the outside tube area (Uo) is 262 W/m2⋅K. The specific heats of water and oil...
An oil cooler is in the form of a single shell 4 tube heat exchanger in...
An oil cooler is in the form of a single shell 4 tube heat exchanger in which oil passes through the tubes and cool water passes through the shell. Water comes in at 15C and leaves at 25C and has a mass flow rate of 20 kg/min. Oil enters at 35C with a mass flow rate of 30 kg/min. Cp of oil is 2.13 kJ/KgC and that of water is 4.18 kJ/kgC. If the surface area of the heat exchanger...
During the experiment of shell and tube heat exchanger by using this equipment the Source of...
During the experiment of shell and tube heat exchanger by using this equipment the Source of the water was from the water tap that is mean it is open feed water To explain more:    the lab engineer used a drink water that supply it from the water tap directly to the heat exchanger equipment And then he discharge the water to the sink that is not correct way ? I do not have a scientific answer in this but what...
What is the process occurring inside the Shell and Tube Heat Exchanger and what is the...
What is the process occurring inside the Shell and Tube Heat Exchanger and what is the driving force?
Design of Shell and Tube Heat Exchanger Crude oil at 198°C is to be cooled to...
Design of Shell and Tube Heat Exchanger Crude oil at 198°C is to be cooled to 39°C. The oil flow-rate is 6.127 kg/s. Cooling water is available at 29°C and at the rate of 27.127 kg/s. The pressure drop allowance for each stream is 100 kN/m2 . Design a suitable shell and tube heat exchanger for this duty. The following are the properties of the two streams at the average temperature: water crude oil density kg/m3 990 850 viscosity mNm-2...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT