In: Statistics and Probability
Estimate a simple linear regression model and present the estimated linear equation. Display the regression summary table and interpret the intercept and slope coefficient estimates of the linear model.
let us consider the data of rents and square foot of house
Rental | Square |
875 | 1500 |
900 | 1900 |
900 | 1200 |
1090 | 1500 |
1175 | 1900 |
1250 | 2900 |
1400 | 2000 |
1400 | 2100 |
1500 | 1600 |
1600 | 1700 |
1700 | 2000 |
1800 | 2600 |
1900 | 2500 |
2000 | 2700 |
2000 | 2200 |
2200 | 3000 |
2300 | 3300 |
2500 | 2300 |
2600 | 2500 |
3000 | 2500 |
3200 | 2700 |
3500 | 3000 |
4000 | 3300 |
4500 | 2200 |
5000 | 3000 |
7000 | 3500 |
and we want to predict rent of houses
using excel>data>data analysis >Regression
we have
SUMMARY OUTPUT | ||||||
Regression Statistics | ||||||
Multiple R | 0.687968 | |||||
R Square | 0.473299 | |||||
Adjusted R Square | 0.451354 | |||||
Standard Error | 1082.42 | |||||
Observations | 26 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 1 | 25268253 | 25268253 | 21.56668 | 0.000103 | |
Residual | 24 | 28119209 | 1171634 | |||
Total | 25 | 53387462 | ||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
Intercept | -1491.42 | 855.5084 | -1.74331 | 0.094079 | -3257.1 | 274.2654 |
Square | 1.624462 | 0.349798 | 4.643994 | 0.000103 | 0.902513 | 2.34641 |
the regression equation is
Rental = -1491.42 +1.625
Slope : for every one square feet increase in area of house then rent will increase by 1.625$
Intercept : if the house size is 0 square feet thrn the rent will be negative i,e- $1491.42