Question

In: Physics

A +6.00 μC point charge is moving at a constant 8.50×106 m/s in the +y-direction, relative to a reference frame.

A +6.00 μC point charge is moving at a constant 8.50×106 m/s in the +y-direction, relative to a reference frame. At the instant when the point charge is at the origin of this reference frame, what is the magnetic-field vector B? it produces at the following points.

a)x=0.500m,y=0, z=0 Enter your answers numerically separated by commas. Bx, By, Bz=???

?b)x=0, y=?0.500m, z=0 Enter your answers numerically separated by commas. Bx, By, Bz=???

?c)x=0, y=0, z=+0.500m Enter your answers numerically separated by commas. Bx, By, Bz=???

?d)x=0, y=?0.500m, z=+0.500m Enter your answers numerically separated by commas. Bx, By, Bz=???

Solutions

Expert Solution


Related Solutions

A +6.00 -μC point charge is moving at a constant 8.00×106 m/s in the + y-direction,...
A +6.00 -μC point charge is moving at a constant 8.00×106 m/s in the + y-direction, relative to a reference frame. At the instant when the point charge is at the origin of this reference frame, what is the magnetic-field vector it produces at the following points. Part A: x = +.5 m, y = 0 m, z = 0 m Part B: x = 0 m, y = -.5 m, z = 0 m Part C: x = 0...
A +7.00 μC point charge is moving at a constant 7.50 ×106m/s in the +y-direction, relative to a reference frame.
A +7.00 μC point charge is moving at a constant 7.50 ×106m/s in the +y-direction, relative to a reference frame. At the instant when the point charge is at the origin of this reference frame, what is the magnetic-field vector B?  it produces at the following points. x=0.500m,y=0, z=0 x=0, y=?0.500m, z=0 x=0, y=0, z=+0.500m x=0, y=?0.500m, z=+0.500m
A -4.60 μC charge is moving at a constant speed of 6.90×105 m/s in the +x−direction...
A -4.60 μC charge is moving at a constant speed of 6.90×105 m/s in the +x−direction relative to a reference frame. At the instant when the point charge is at the origin, what is the magnetic-field vector it produces at the following points. a. x=0.500m,y=0, z=0 b. x=0, y=0.500m, z=0 c. x=0.500m, y=0.500m, z=0 d. x=0, y=0, z=0.500m
A point charge q = 40 nC has a velocity 3* 106 m/s in the direction...
A point charge q = 40 nC has a velocity 3* 106 m/s in the direction av = 0.2 ax + 0.75 ay – 0.3 az. Calculate; a) The magnitude of the force on the charge due to the field B = 3ax + - 4ay + 6az mT. b) The magnitude of the force on the charge due to the field E = -2ax + 4ay + 5az kV/m c) The Lorentz force due to the two fields in...
A charge per unit length λ = +6.00 μC/m is uniformly distributed along the positive y-axis...
A charge per unit length λ = +6.00 μC/m is uniformly distributed along the positive y-axis from y = 0 to y = +a = +0.400 m. A charge per unit length λ = -6.00 μC/m, is uniformly distributed along the negative y-axis from y = 0 to y = –a = -0.400 m. What is the magnitude of the electric field at a point on the x-axis a distance x = 0.271 m from the origin?
From the reference frame of the Earth, a 0.0500-kilogram ball moving in the +x direction at...
From the reference frame of the Earth, a 0.0500-kilogram ball moving in the +x direction at 4.0 m/s overtakes and collides with a 0.1000-kg ball moving in the +x direction at 2.0 m/s. Assume that the collision is perfectly elastic, with all motion after the collision also along the x axis, and that the balls are moving on a horizontal, friction-less surface. Only Galilean relativity is needed for this problem. (1) Calculate the speed and directions of each ball after...
•• A meter stick is moving with speed relative to a frame S. (a) What is...
•• A meter stick is moving with speed relative to a frame S. (a) What is the stick’s length, as measured by observers in S, if the stick is parallel to its velocity v? (b) What if the stick is perpendicular to v? (c)What if the stick is at to v, as seen in the stick’s rest frame? [HINT: You can imagine that the meterstick is the hypotenuse of a 30–60–90 triangle of plywood.] (d) What if the stick is...
A 5.1 μC point charge is on the x-axis at 3.4 m, and a 4.2 μC...
A 5.1 μC point charge is on the x-axis at 3.4 m, and a 4.2 μC point charge is on the x-axis at 4.4 m. Find the magnitude of the net electric field at the point on the y-axis where y = 2.2 m . The value of the Coulomb constant is 8.98755×10 N·m /C . Answer in units of N/C. Determine the direction of this electric field (as an angle between −180◦ and 180◦ mea- sured from the positive...
A 3 kg object is moving along the +y+y direction with a speed of 4 m/s...
A 3 kg object is moving along the +y+y direction with a speed of 4 m/s when it experiences an impulse of 5i^−8j^5i^−8j^ Ns. What is the object's speed after the impulse is applied?
A charged particle of mass m = 7.3X10-8 kg, moving with constant velocity in the y-direction...
A charged particle of mass m = 7.3X10-8 kg, moving with constant velocity in the y-direction enters a region containing a constant magnetic field B = 1.8T aligned with the positive z-axis as shown. The particle enters the region at (x,y) = (0.5 m, 0) and leaves the region at (x,y) = 0, 0.5 m a time t = 463 μs after it entered the region. 1. With what speed v did the particle enter the region containing the magnetic...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT