In: Chemistry
For the diprotic weak acid H2A, Ka1 = 2.8 × 10-6 and Ka2 = 8.7 × 10-9. What is the pH of a 0.0500 M solution of H2A? What are the equilibrium concentrations of H2A and A2– in this solution?
Given the concentration of H2A = 0.0500 M
The chemcial equation for the first dissociation is
------------- H2A ------- > HA-(aq) + H+(aq) ; Ka1 = 2.8*10-6
init.con: 0.0500M ------ 0 M -------- 0 M
change: - 0.0500x M, +0.0500xM, +0.0500xM
eqm.con:0.0500(1 - x)M, 0.0500xM, 0.0500xM
Ka1 = 2.8*10-6 = [HA-(aq)]*[H+(aq)] / [H2A] = (0.0500xM * 0.0500xM) / 0.0500(1 - x)M
since x <<1, (1 - x) is nearly equals to 1.
=> x = underroot( 5.6*10-5) = 7.48*10-3 M
Hence [H2A] = 0.0500(1 - x) M = 0.0500(1 - 7.48*10-3)M = 0.0496 M (answer)
[HA-(aq)] = [H+(aq)] = 0.0500x M = 0.0500*7.48*10-3 M = 3.74*10-4 M
The chemcial equation for the second dissociation is
------------- HA-(aq) ------- > A2-(aq) + H+(aq) ; Ka2 = 8.7*10-9
init.con: 3.74*10-4 M ----- 0 M ------------- 3.74*10-4 M
change: - 3.74*10-4 yM, +3.74*10-4 yM, +3.74*10-4 yM
eqm.con:3.74*10-4(1 - y)M, 3.74*10-4 yM, 3.74*10-4 (1+y)M
Ka1 = 2.8*10-6 = [A2-(aq)]*[H+(aq)] / [HA-(aq)] = [3.74*10-4 yM*3.74*10-4 (y+1)M] / 3.74*10-4(1 - x)M
since y <<1, (1 - y) and (1+y) are nearly equals to 1.
=> y = 7.49x10-11 M
Hence [A2-(aq)] = 3.74*10-4 yM = 3.74*10-4 * 7.49x10-11M = 2.80*10-14 M(answer)
[H+(aq)] = 3.74*10-4 (1+y)M = 3.74*10-4 M
=> pH = - log[H+(aq)] = 3.43 (answer)