In: Math
identify (but don’t collect) a type of dataset that might vary significantly from its mean. (Examples may be adult’s weights or BMIs, a company’s sales, or the number of pieces of mail you receive in a week. Using your imaginary dataset, answer the following questions:
a) In computing, data is information that has been translated into a form that is efficient for movement or processing. Relative to today's computers and transmission media, data is information converted into binary digital form. It is acceptable for data to be used as a singular subject or a plural subject. Raw data is a term used to describe data in its most basic digital format. The concept of data in the context of computing has its roots in the work of Claude Shannon, an American mathematician known as the father of information theory. He ushered in binary digital concepts based on applying two-value Boolean logic to electronic circuits. Binary digit formats underlie the CPUs, semiconductor memories and disk drives, as well as many of the peripheral devices common in computing today. Early computer input for both control and data took the form of punch cards, followed by magnetic tape and the hard disk.
b) Measures of average such as the median and mean represent the typical value for a dataset. Within the dataset the actual values usually differ from one another and from the average value itself. The extent to which the median and mean are good representatives of the values in the original dataset depends upon the variability or dispersion in the original data. Datasets are said to have high dispersion when they contain values considerably higher and lower than the mean value.
c) Common cause variation is fluctuation caused by unknown factors resulting in a steady but random distribution of output around the average of the data. It is a measure of the process potential, or how well the process can perform when special cause variation removed. Common cause variability is a source of variation caused by unknown factors that result in a steady but random distribution of output around the average of the data. Common cause variation is a measure of the process's potential, or how well the process can perform when special cause variation is removed. Therefore, it is a measure of the process technology. Common cause variation is also called random variation, noise, non controllable variation, within group variation, or inherent variation.