In: Math
The method of tree ring dating gave the following years A.D. for an archaeological excavation site. Assume that the population of x values has an approximately normal distribution. 1285 1250 1187 1236 1268 1316 1275 1317 1275
(a) Use a calculator with mean and standard deviation keys to find the sample mean year x and sample standard deviation s. (Round your answers to the nearest whole number.)
x = ____A.D.
s = _____yr
(b) Find a 90% confidence interval for the mean of all tree ring dates from this archaeological site. (Round your answers to the nearest whole number.)
lower limit A.D.
upper limit A.D.
________________________________________________________________________
How much does a sleeping bag cost? Let's say you want a sleeping bag that should keep you warm in temperatures from 20°F to 45°F. A random sample of prices ($) for sleeping bags in this temperature range is given below. Assume that the population of x values has an approximately normal distribution.
| 50 | 90 | 95 | 110 | 85 | 60 | 30 | 23 | 100 | 110 | 
| 105 | 95 | 105 | 60 | 110 | 120 | 95 | 90 | 60 | 70 | 
(a) Use a calculator with mean and sample standard deviation keys to find the sample mean price x and sample standard deviation s. (Round your answers to two decimal places.)
| x = | $ | 
| s = | $ | 
(b) Using the given data as representative of the population of
prices of all summer sleeping bags, find a 90% confidence interval
for the mean price μ of all summer sleeping bags. (Round
your answers to two decimal places.)
| lower limit | $ | 
| upper limit | $ | 
Question 1
| Values ( X ) | Σ ( Xi- X̅ )2 | |
| 1285 | 300.4433 | |
| 1250 | 312.1123 | |
| 1187 | 6507.1165 | |
| 1236 | 1002.7799 | |
| 1268 | 0.1111 | |
| 1316 | 2336.1079 | |
| 1275 | 53.7773 | |
| 1317 | 2433.7745 | |
| 1275 | 53.7773 | |
| Total | 11409 | 13000.0001 | 
Part a)
Mean X̅ = Σ Xi / n
X̅ = 11409 / 9 = 1267.6667 
 1268
Sample Standard deviation SX = √ ( (Xi - X̅
)2 / n - 1 )
SX = √ ( 13000.0001 / 9 -1 ) = 40.3113 
40
Part b)
Confidence Interval
X̅ ± t(α/2, n-1) S/√(n)
t(α/2, n-1) = t(0.1 /2, 9- 1 ) = 1.86
1267.6667 ± t(0.1/2, 9 -1) * 40.3113/√(9)
Lower Limit = 1267.6667 - t(0.1/2, 9 -1) 40.3113/√(9)
Lower Limit = 1242.6798  
 1243
Upper Limit = 1267.6667 + t(0.1/2, 9 -1) 40.3113/√(9)
Upper Limit = 1292.6536  
 1293
90% Confidence interval is ( 1243 , 1293 )
Question 2
| Values ( X ) | Σ ( Xi- X̅ )2 | |
| 50 | 1098.9225 | |
| 90 | 46.9225 | |
| 95 | 140.4225 | |
| 110 | 720.9225 | |
| 85 | 3.4225 | |
| 60 | 535.9225 | |
| 30 | 2824.9225 | |
| 23 | 3618.0225 | |
| 100 | 283.9225 | |
| 110 | 720.9225 | |
| 105 | 477.4225 | |
| 95 | 140.4225 | |
| 105.0 | 477.4225 | |
| 60 | 535.9225 | |
| 110 | 720.9225 | |
| 120 | 1357.9225 | |
| 95 | 140.4225 | |
| 90 | 46.9225 | |
| 60 | 535.9225 | |
| 70 | 172.9225 | |
| Total | 1663 | 14600.55 | 
Part a)
Mean X̅ = Σ Xi / n
X̅ = 1663 / 20 = 83.15
Sample Standard deviation SX = √ ( (Xi - X̅
)2 / n - 1 )
SX = √ ( 14600.55 / 20 -1 ) =
27.72
Part b)
Confidence Interval
X̅ ± t(α/2, n-1) S/√(n)
t(α/2, n-1) = t(0.1 /2, 20- 1 ) = 1.729
83.15 ± t(0.1/2, 20 -1) * 27.7209/√(20)
Lower Limit = 83.15 - t(0.1/2, 20 -1) 27.7209/√(20)
Lower Limit = 72.43
Upper Limit = 83.15 + t(0.1/2, 20 -1) 27.7209/√(20)
Upper Limit = 93.87
90% Confidence interval is ( 72.43 , 93.87 )